티스토리 뷰
[Annotated] Blue-sea thinking: Technology is transforming the relationship between people and the oceans
af334 2018. 3. 14. 15:31Humans are starting to use the sea more as farmers than as hunters, says Hal Hodson
In the summer of 1942, as America's Pacific fleet was slugging it out at the battle of 1Midway, the USS Jasper, a coastal patrol boat, was floating 130 nautical miles (24km) off the west coast of Mexico, listening to the sea below. 2It was alive with sound 3: "Some fish grunt, others 4whistle 5or sing, and some just grind their teeth 6," reads the ship's log 7.
The Jasper did not just listen. She sang her own song to the sea - a song of sonar. Experimental equipment on board beamed chirrups of sound 8 into the depths 9 10and listened for their return 11. When they came back, they gave those on board a shock. The Jasper's charts said she was in 3,600 meters (2,000 fathoms 12) of water. But the time it took the soundwaves to bounce back 13 14said the bottom of the ocean was just 450 meters below the ship's hull 15.
The instruments were not wrong. The interpretation 16 was. The Jasper's crew had found a new ecosystem so dense with aquatic life 17it appeared to their rudimentary sonar to be solid 18 19- a "phantom bottom" to the ocean. 20Unlike the sea's true floor 21, it moved, its billions of inhabitants rising en masse to feed at night 22, then sinking away from predators during the day. This "deep scattering layer" - named for 23the way it was found by the scattering of sound waves - is not local to Mexico. 24Present in all the oceans, it is one of the largest ecosystems in the world. 25Its daily rise and fall in their heartbeat 26, an unseen spectacle of 27 planetary 28 extent 29 30.
That such a mass of 31animals should go undiscovered for so long shows 32quite how inscrutable the sea has always been 33. The subsurface ocean is inhospitable to 34humans 35and their machines. Salt water corrodes exposed mechanisms 36 37and absorbs both visible light and radio waves 38- thus ruling out radar 39and long-distance communication. The lack of breathable oxygen severely curtails human visits 40 41. The brutal pressure 42makes its depths hard to access at all.
The discovery of the deep scattering layer was a landmark in the use of 43technology to get around these problems 44. It was also a by-blow 45. The Jasper was not out there looking for deepwater 46plankton 47; it was working out how to use 48sonar 49(which stands for 50Sound Navigation And Ranging) to spot submarines, and 51thus 52help to keep ships like those at Midway safe.
Sonar research has been mostly military ever since 53, as have various other forms of high-tech ocean sensing 54. But the new sensorium 55allowed an exploration of the ocean's depths that became crucial to science and commerce 56. Sea-floor surveys undertaken in 57 58the 1950s and 1960s discovered a chain of underwater mountains snaking through 59 the oceans 60like the seam on a baseball. This discovery 61helped transform the controversial notion of continental drift into 62the far more powerful and explanatory theory of 63plate tectonics 64. Modern industrial fishing 65and offshore oil 66and gas benefited in similar ways 67: seeing the seas and their contents mattered 68 69.
In the past decade 70, remote underwater objects 71. And smaller, cheaper electronic components 72using less power - a gift from the smartphone boom which kickstarted progress in 73drones, robotics 74and small satellites - are now putting to sea 75. They may be just as transformative there as in 76the skies and in space.
Darling it's better down where it's wetter
All this change promises to bring about a transformation in 77 the way humans interact with 78the oceans. For most of history 79, people have had a hunter-gatherer relationship with 80the seas. That approach no longer works. If overfishing 81continues at the current rate, the seas will run out of fish. One response to this would be to decry the technological change that 82has made such overfishing possible. Another is to ask how the latest technology can be used in ways that improve things, undoing the damage of the past 83and making the old hunting ground 84a new realm 85, one that is more productive 86and more sustainable 87.
One crucial change brought about by the new technology is a reduction in the number of people involved 88. Until recently 89, using sonar was an expensive business, requiring a ship with a crew, towing equipment through the depths behind it 90. Now underwater drones (such as the one being launched in the picture on the previous page) can move around as fast as ocean currents flow 91 92, which means they can go wherever they want and stay there if needed. They can communicate acoustically 93, with each other or with a mother ship 94. Their lithium-ion batteries - one of those technologies smartphones have greatly improved - can provide power for days.
By removing the expense of keeping humans alive on or under the sea, these technologies vastly expand the volume of 95the ocean which can be monitored and measured, whether it be for fishery management or weather prediction 96 97. They enable the better study of icebergs, underwater volcanoes and every living creature under the sea. And drones will soon be able to transfer data on all of this instantly back to shore from the middle of the ocean, over newly built internet infrastructure.
"When data start to inform decisions, very interesting things happen," says Bilal Zuberi, a partner at Lux, a venture-capital firm 98. These things include investment in infrastructure. Mr Zuberi envisions herds of 99 wind turbines 100 moving around 101the seas autonomously 102, grazing on winds 103which offer the most power. The possibility of mining previously inaccessible seabeds 104 105may become a reality 106. So may the farming of fish in the open ocean 107 108. As befits their origins 109, the new technologies have military implications 110, too, as improved undersea surveillance 111makes it harder for submarines to hide, thus denting their second-strike capabilities 112.
Jacques Cousteau, a French conservationist, called in 1971 for a shift in how 113humans see the oceans. "We must plant the sea 114and herd its animals 115... using the sea as farmers instead of hunters," he said. "That is what civilization is all about." It has taken half a century and a technological revolution, but the means of 116realizing Cousteau's vision are now here. This quarterly will examine the technologies that are enabling this virtual settlement of the seas 117, and the impact it will have. It will also examine the perils 118such changes could bring.
Modern civilization has not shown much restraint in the use of 119technologies which make extracting resources from the earth or the seas easier, as the current overfishing crisis shows. The new developments will make it even simpler to drill or mine or fish in ways that could seriously damage the environment.
But the choice is not between taking these risks and taking no risks. It is about judging those risks against the capacity for wise regulation to reduce the risks already being taken - and to lessen the harm already being done to the seas 120, their inhabitants and those who rely on them. That capacity for good is also one that the new technologies will increase.
PATANIA ONE sits in a large shed on the outskirts of 121 122Antwerp. Green and cuboid 123, with an interior steel frame, rubberized treads 124 125and pressure-resistant electronic innards 126 127, it is about the size of a minivan. In May 2017 it became the first robot in 40 years to be lowered to the sea floor in 128the Clarion Clipperton Zone (CCZ), about 5,000 meters beneath the Pacific ocean near where the Jasper did her pioneering sonar work 129. There it gathered data about the seabed and how larger robots might move carefully across it 130, sucking up valuable minerals en route 131 132.
The CCZ is a 6m square-kilometer (2.3m square-mile) tract between 133two of the long, straight "fracture zones" which 134the stresses of 135plate tectonics have created in the crust beneath 136the Pacific. Scattered across it are trillions of fist-sized 137 138mineral nodules 139, each the result of tens of millions of years of 140slow agglomeration around a core of bone 141, shell or rock. Such nodules are quite common in the Pacific, but the CCZ is the only part of the basin where 142the International Seabed Authority (ISA), which regulates such matters beyond 143the Exclusive Economic Zones (EEZs) of individual countries, currently permits exploration. Companies from Japan, Russia, China and a couple of dozen other countries have been granted concessions to 144explore for 145minerals in the CCZ. The ISA is expected to approve the first actual mining in 2019 or 2020.
This could be big business. James Hein of the United States Geological Survey and colleagues estimated in a paper in 2012 that the CCZ holds more nickel, cobalt and manganese than all known terrestrial deposits of 147those metals put together 148. The World Bank expects the battery industry's demand for these, and other, minerals to increase if the transition to clean energy 149 speeds up enough to 150 keep global temperatures below the limits set in 151 the Paris agreement on climate 152.
One of the firms attracted by this vast potential market 153is DEME, a Belgian dredging company 154which has already proved resourceful in seeking out new businesses 155: installing offshore wind farms 156now provides it with revenues of nearly €1bn ($1.2bn) a year. Korea, Japan and China all have state-run research projects looking to dredge nodules from the deep sea with 157robots: "It really is a race 158," says Kris Van Nijen, who runs DEME's deep-sea mining efforts. At the moment 159 his firm is setting the pace 160. It has learned a lot from the exploits of 161Patania One, such as how hard you can push bearings rated to 162 163500 atmospheres of pressure 164and how deep treads sink into 165 the deep-sea ooze for 166 a given load 167.
The idea of mining the CCZ is not new. The Pacific's mineral nodules were discovered by HMS Challenger, a British research vessel that first dredged the abyssal depths in 168 169the 1870s. Lockheed Martin, an American defence contractor, tried prospecting the CCZ in 170the 1960s. Its caterpillar tracks were not reliable enough to operate 171 at such depth 172, so the company imagined two Archimedes screws to 173drag its vehicle through the mud. (Lockheed's deep-sea mining expertise 174was later used in a CIA operation to recover a Soviet submarine which 175sank in the CCZ in 1968.) At the time there was hyped speculation that 176 177deep-sea mining would develop rapidly by 178the 1980s. A lack of demand (and thus investment), technological capacity 179and appropriate regulation kept that from happening. The UN Convention on the Law of the Sea (UNCLOS), which 180set up the ISA, was not signed until 1982. (America has still not ratified it 181, and thus cannot apply to the ISA for sea-floor-mining permits.)
Mr Van Nijen and his competitors think that now, at last 182, the time is right. DEME is currently building Patania Two, or P2, in an Antwerp shipyard. It will be deployed to the Pacific in 2019. Where P1 was basically a deep-sea tractor, P2 is a full-blown prototype 183 184. A sweeping nozzle mounted on its front (which gives it the look of a combine harvester) will 185suck up tonnes of nodules every minute; the power it needs to do so will flow down a thick umbilical from 186a mother ship above. In commercial production 187, a similar cord will pump a slurry of 188nodules and dirt back up to the ship - an impressive bit of engineering. For the time being 189P2 will just keep some of the nodules in a container on its back for later inspection.
In order to satisfy the ISA, this new machine does not just have to show it can harvest nodules; it also has to show that it can do so in an environmentally sensitive way 190. Its harvesting will throw up plumes of silt which 191 192, in settling, could swamp the sea floor's delicate ecosystem 193. A survey of CCZ life in 2016 found a surprising diversity of life 194. Of the 12 animal species collected, seven were new to science. To help protect them, the mining field will be ringed with buoys 195 196, monitoring any plumes of silt that are bigger than DEME had predicted. The operations will also be monitored by a German research ship, funded by the EU.
If P2 succeeds, it will be time for P3, which will be the size of a small house. It will have two drone escorts, one to move ahead of it and one behind. They will monitor how much silt it disturbs, and will shut down the operation if necessary. Thus, P3 will be able to steer along 197the seabed autonomously 198. DEME will then build a customized surface vessel, ending up in about 2025 with a new kind of mining operation 199, at a total cost of $600 million.
The CCZ is not the only sea floor that has found itself in miners' sights 200. Nautilus, a Canadian firm, says it will soon start mining the seabed in Papua New Guinea's EEZ for gold and copper, though at the time of writing the ship it had commissioned for the purpose sits unfinished in 201a Chinese yard. A Saudi Arabian firm called Manafai wants to mine the bed of 202the Red Sea, which is rich in metals from zinc to gold 203. There are projects to mine iron sands off coast of 204New Zealand and manganese crusts off the coast of Japan. De Beers already mines a significant proportion of its diamonds from the sea floor off the coast of Namibia, although in just 150 meters of water this is far less of a technical challenge 205.
If the various precautions work out 206 207, the benefits of deep-sea mining might be felt above the water as well. Mining minerals on land can require clearing away forests 208and other ecosystems in order to gain access, and moving hundreds of millions of tonnes of rock to get down to the ores. Local and indigenous people have often come out poorly from the deals made between miners and governments. Deep-sea mining will probably produce lower grade ores, but it will do so without affecting human populations.
It will also deliver those ores straight on to ships which can move them directly to processing plants on any coast in the world, including those using solar or wind power, thus reducing the footprint of 209mineral extraction even more. Having seen the destruction wrought by 210mining on land, undersea miners are working doubly hard to plough 211 a different furrow 212 213.
Norway hopes to triple its aquaculture production by 2030 214
An unusual object arrived off the coast of Norway last September. Roughly the weight of the Eiffel Tower and enclosing a volume greater than St Peter's Basilica in Rome, 215its polyhedral frame measures 68 meters from top to bottom and over 100 meters in diameter 216 217. Parked 5km offshore, it looks like a partly submerged bright-yellow Ferris wheel 218 tipped on its side 219, with a white control tower at its hub. Locals took it for a flying saucer 220as it passed South Africa on its way from the shipyard in China where it was built. (The picture below shows it before it was submerged.) Yet to come are 221its occupants 222: 1.5m baby salmon.
Ocean Farm 1, as the structure is known, is the first of six experimental fish farms ordered by SalMar, a Norwegian firm, at a total cost of $300 million InnovaSea, an American firm, makes large open-ocean aquaculture nets 223called SeaStations, which are currently used off the coast of Panama and Hawaii, but Ocean Farm 1 is "by far the largest open-ocean fish farm in the world," says Thor Hukkelas, who leads research and development on aquaculture at Kongsberg Maritime, a Norwegian engineering company. Mr Hukkelas's team provided Ocean Farm 1's sensor system: 12 echo sounders 224mounted on the bottom of the frame, high-definition cameras dangled into 225 the water at different depths 226, oxygen sensors and movable 227, submerged feeding tubes.
Fish farming plays an increasingly central role in the provision of 228 sufficient amounts of 229protein to Earth's population. People eat more fish globally than beef, and farmed fish account for almost half of that amount. Many wild fisheries are already at or past their sustainable capacity 230 231, so efforts to make fish farming more productive are vital.
Ocean Farm 1 aims to automate what 232is an expensive and difficult business, and to solve two key problems that occur in near-shore aquaculture 233 234: that there is not enough space and that it is too polluting 235. The excrement from 236millions of salmon can easily foul up 237Norway's fjords 238, and their shallow, relatively still water 239is a breeding ground for sea lice 240 241. In the open ocean the water is deeper and better oxygenated 242. The currents are stronger and so better able to sweep away excrement. 243
Near-shore farms normally spread feed on the water's surface 244 245and allow it to sink, but Ocean Farm 1 has 16 valves at varying depths 246, through which feed can be pushed. By putting it farther down in the cage it is able to keep the salmon in deeper water. The salmon are fine with this. The sea lice, which like the shallows, are not.
All of this means the number of fish can be increased. The Norwegian government wants to triple its aquaculture production by 2472030 and quintuple it by 2482050. "Scaling up of 249traditional aquaculture is not going to reach these high-growth ambitions 250," says Mr Hukkelas.
Kongsberg is gathering data from all the sensors on the farm to build a machine-learning model, called SimSalma, which learns the behavior of the salmon in order to optimize their feeding 251 252. Currently, human operators on the structure 253 254decide when and where to feed the fish by examining the data. By 2019 Kongsberg plans to have automated this, pushing feed at optimum times and places 255and reducing human involvement. The success and expansion of such projects 256would represent a major step towards maintaining global fish stocks.
New technology could affect submarines' second-strike capabilities 257
On July 20th 1960, a missile popped out of an apparently empty Atlantic ocean. Its solid-fuel rocket 258 fired just as it cleared the surface and it tore off into the sky. Hours later, a second missile followed. An officer on the ballistic-missile submarine USS George Washington sent a message to President Dwight Eisenhower: "POLARIS - FROM OUT OF THE DEEP TO TARGET. PERFECT." America 259had just completed its first successful missile launch of an intercontinental ballistic missile (ICBM) from beneath the ocean 260. Less than two months later, Russia conducted a similar test in the White Sea, north of Archangel.
Those tests began a new phase in 261the cold war. Having ICBMs on effectively invisible launchers meant that neither side could destroy the other's nuclear arsenal in a single attack 262. So by keeping safe the capacity for retaliatory second strikes 263, the introduction of ballistic-missile submarines helped develop the concept of "mutually assured destruction" (MAD), 264thereby deterring any form of 265 266nuclear first strike. America, Britain, China, France and Russia all have nuclear-powered submarines on permanent or near permanent patrol, capable of launching nuclear missiles; India has one such submarine, too, and Israel is believed to have nuclear missiles on conventionally powered submarines.
As well as menacing 267the world at large 268, submarines pose a much more specific threat to other countries' navies; most military subs are attack boats rather than missile platforms. This makes anti-submarine warfare (ASW) a high priority for anyone who wants to keep their surface ships 269on the surface. Because such warfare depends on interpreting lots of data from different sources - sonar arrays on ships, sonar buoys dropped from aircraft, passive listening systems on the sea-floor - technology which allows new types of sensor and new ways of communicating could greatly increase its possibilities. "There's an unmanned-systems explosion," says Jim Galambos of DARPA, the Pentagon's future-technology arm 270. Up until now 271, he says, submariners could be fairly sure of their hiding place 272, operating "alone and unafraid 273". That is changing.
Hello, buoys,
Aircraft play a big role in today's ASW, flying from ships or shore to drop "sonobuoys" 274in patterns calculated to have the best chance of spotting something 275. This is expensive. An aeroplane with 8-10 people in 276it throws buoys out and waits around to 277listen to them and process their data on board 278. "In future you can envision a pair of 279AUVs [autonomous underwater vehicles], one deploying and one loitering 280and listening," says Fred Cotaras of Ultra Electronics, a sonobuoy maker. Cheaper deployment means more buoys.
But more data is not that helpful if you do not have ways of moving it around 281, or of knowing where exactly it comes from. That is why DARPA is working on a Positioning System for Deep Ocean Navigation (POSYDON) which aims to provide "omnipresent, robust positioning across 282ocean basins" just as GPS satellites 283do above water, says Lisa Zurk, who heads up the programme 284. The system will use a natural feature of the ocean known as the "deep sound channel". The speed of sound 285in water depends on temperature, pressure and, to some extent 286, salinity 287. The deep sound channel is found at the depth where these factors provide the lowest speed of sound. Below it, higher pressure makes the sound faster; above it, warmer water has the same effect.
Changes in the speed of sound (or for that matter light) cause sound (or light) waves to bend 288, a phenomenon known as refraction 289. The higher speed of sound above and below the deep sound channel thus bend sound back into it, allowing it to propagate for thousands of kilometers 290, especially if the sound's wavelengths 291are long. It is a natural analogue to the process that keeps light in an optical fibre 292. Some zoologists 293believe whales use it as an ocean-wide 294telephone system.
In the POSYDON system, buoys on the surface would receive a GPS fix from 295satellites, then retransmit that data into 296the deep sound channel in acoustic form to 297submerged submarines and AUVs. Dr Zurk's team is now determining the optimum frequencies for propagation 298 299, and modelling ways to correct for variable 300 conditions 301 302. The simplicity of POSYDON would allow AUVs to off load a lot of the expensive equipment that they currently use to decipher positioning 303, says Dr Galambos. That means the possibility of more room on the drones for other useful stuff, or more money for more drones.
Even in heavily surveilled seas, spotting submarines will remain tricky 304. They are already quiet, and getting quieter; new "air-independent propulsion" systems mean that 305conventionally powered submarines can now turn off their diesel engines and run as quietly as nuclear ones, perhaps even more so, for extended periods of time 306. Greater autonomy, and thus fewer humans - or none at all - could make submarines quieter still. "As we pivot from manned to unmanned 307, no air cavity 308, maybe no propulsion motor, that's a really 309challenging platform to find," says Dr Zurk.
A case in point is 310 a Russian weapon called Status-6, also known as Kanyon, about which Vladmir Putin boasted in a speech on 311March 1st. America's recent nuclear-posture review 312describes it as "a new intercontinental, nuclear-armed, nuclear-powered undersea autonomous torpedo 313 314". A Russian state television broadcast in 2015 appeared to show it as a long, thin AUV that can be launched from a modified submarine and travel thousands of kilometers to explode off the shore of a major city with a great deal more energy than 315the largest warheads on 316ICBMs, thus generating a radioactive tsunami. Such a system might be seen as preserving a second-strike capability even if the target had a missile-defence system capable of shooting ICBMs out of the sky.
Despite such disturbing possibilities 317, many experts think that the balance of advantage is 318currently with seekers, not hiders. Sebastian Brixey-Williams of the British American Security Information Council thinks that "tracking and trailing" submarines will, within a decade, become significantly easier. Passive systems which simply listen will be a key part of this. Mr Brixey-Williams predicts that a few important choke points 319, such as the gap between Scotland and Iceland could now be completely surveilled by an array of 320just 15 acoustic sensors, far more sophisticated than the chain of hydrophones 321which did that job in the cold war. If a submarine is detected by such a system, it can then be trailed by 322another submarine, or some new form of drone.
New cold war
One part of the ocean that has become particularly interesting in this regard is 323the Arctic. Tracking submarines under or near ice is difficult, because ice constantly shifts 324, crackles 325and groans loudly enough to mask 326 the subtle sounds of 327 328a submarine. With ever less ice in the Arctic this is becoming less of a problem, meaning America should be better able to track Russian submarines. Its Assured Arctic Awareness programme, also run by Dr Zurk, aims to develop new sensing techniques that can provide year-round monitoring without requiring a human presence 329. It is working on probes that can be deposited on 330the ice by drone, then melt their way down to the ocean beneath 331. Dr Zurk also talks of tagging 332icebergs with sensors, thus getting from rides 333 across the ocean 334.
Greater numbers of better sensors, better networked 335, will not soon make submarines useless; but even without breakthroughs 336, they could erode the strategic norm that 337 338has guided nuclear thinking for over half a century - that of an unstoppable second strike. If a country even suspects that the location of its second-strike submarines might be known, their value for nuclear deterrence decreases 339. As Mr Brixey-Williams wrote in 2016: "The political tensions and threat to strategic stability that [tracking and trailing] would create should not be underestimated 340... and may be more dangerous than the technology itself."
From sharks to ice shelves, monsoons to volcanoes, the scope of ocean monitoring is widening 341 342
In November 2016 a large crack appeared in the Larsen C ice shelf off Antarctica. By July 2017 a chunk a quarter of the size of 343Wales, weighing one trillion tonnes 344, broke off from the main body of the shelf and started drifting away into the Southern Ocean. The shelf 345is already floating, so even such a large iceberg detaching itself 346did not affect sea levels 347. But Larsen C buttresses a much larger mass of 348ice that sits upon the Antarctic continent. If it breaks up completely 349, as its two smaller siblings (Larsens A and B) have done over the past 20 years, that ice on shore 350could flow much more easily into the ocean. If it did so - and scientists believe it would - that ice alone could account for 10cm of sea-level rise 351, more than half of the total rise seen in the 20th century.
The dynamics of the process 352, known as calving, that 353causes a shelf to break up are obscure 354. That, however, may soon change. Ocean Infinity, a marine-survey firm based in Texas, is due to send 355two autonomous drones under the Larsen C shelf in 2019, the first subglacial survey of its kind 356. "It is probably the least accessible and least explored are on the globe," says Julian Dowdeswell, a glaciologist at 357the University of Cambridge who will lead the scientific side of the project.
The drones set to explore 358Larsen C look like 6-meter orange cigars and are made by Kongsberg - the same Norwegian firm that runs the new open-ocean fish farms. Called Hugin, after one of the ravens who flew around the world gathering information for Odin, a Norse god, the drones are designed to cruise precisely planned routes to 359investigate specific objects people already know about, such as oil pipelines, or to find things that they care about, such as missing planes. With lithium-ion-battery systems about as big as those found in a Tesla saloon 360the drones can travel at four knots for 60 hours on a charge 361, which gives them a range of about 400km. Their sensors will measure how the temperature of the water varies 362. Their sonar - which in this case, unusually, looks upwards 363- will measure the roughness of the bottom of 364the ice. Both variables are crucial in assessing how fast the ice shelf is breaking up, says Dr Dowdeswell.
The ability to see bits of the ocean, and things which it contains, that were previously invisible does not just matter to miners and submariners. It matters to scientists, environmentalists and fisheries managers. It helps them understand 365the changing Earth 366, predict the weather - including its dangerous extremes - and maintain fish stocks 367and protect other wildlife. Drones of all shapes and size are hoping to provide far more such information than has ever been available before.
Saildrone, a Californian marine-robotics startup, is looking at the problem of managing fish stocks. Its tools are robot sailing boats covered with sensors which it builds at something more like a factory than a shipyard on the island of Alameda in 368San Francisco Bay 369. These 7-meter, half-tonne vessels - it has so far built 20 of them, one of which is shown on the cover of this quarterly 370- are designed to ply the seas autonomously 371, using carbon-fibre wings as their sails 372. The wing has a fin attached to it which keeps it trim to the wind at all times 373 374. Its on-board computer 375(which has a GPS-equipped autopilot 376 377), its sensors and its radio get their modest 30 watts of power from lithium-ion batteries topped up by energy from solar panels whenever the sun is out 378.
One of the first hubs deploying these drones is at Dutch Harbor on Amaknak Island in Alaska; at any given time three of the boats based there are off monitoring 379a large pollock fishery in the Bering Sea, something they can do autonomously for up to a year before returning for maintenance 380 381. They gather data using echo-sounders 382designed by Simrad, a subsidiary of 383Kongsberg. Because each species of fish reflects different frequencies of 384sound in its own way 385(often because their swim bladders resonate differently 386 387) a sonar which emits a wide range of frequencies 388 389, as the wideband Simrad devices do, can tell what is a pollock and what is not.
Never mind the pollock
The drones supplement 390 the fisheries' main survey ship, which counts the pollock at the beginning of every season in order to determine how many fish can be caught. Their data give it a better sense of where to look. Sebastien de Halleux, Saildrone's chief operating officer 391, says they also find more pollock, providing a count 25% higher than that of 392the official survey vessel. This may be because the drones cause less disturbance 393and drive fewer fish away. In time 394he thinks the drones might go beyond helping the existing system 395and do the job on their own, which would be a lot cheaper.
Pollock are good to eat, and if fisheries are managed sustainably 396they will remain so in perpetuity 397. But they are hardly the most exciting fish to monitor. That honor must surely go to the great white shark. Jayson Semmers, a marine biologist at the University of Tasmania in Australia, is using 398a new generation of sensor tags to study the behavior of these fearsome fish in more detail than was possible before 399- not to protect people, as shark attacks are very rare, but to build a scientific understanding of their metabolism 400. He uses accelerometer data from 401 a tag the size of a grain of rice, attached to the shark's fin with a clamp 402 403, to calculate the energy it expands when it breaches out of the water 404 405.
The tags are too small to have enough power to send their data straight back to base. But they do not need to be retrieved directly from 406the shark (which is probably just as well). Their attachments dissolve over the course of 407their life, so in time they float free, rising to the surface and emitting a simple signal that allows them to be found. Armed with 408the data they record, Dr Semmens can calculate the fish's total energy needs, and thus how much prey a single shark requires. That can be used to gain an understanding of the flow of energy through the food chain 409 410, which is basic to understanding the dynamics of 411the ecosystem. The flow of energy through terrestrial ecosystems 412is comparatively 413easy to study; marine ones are more mysterious.
A tiny sensor that measures a shark's metabolism seems remarkable - but at heart 414it is no more so than 415a modern phone. "The accelerometer I use to measure great white shark activity," says Dr Semmens, "is the same one you use to turn your smartphone into a lightsabre." Such tiny tags, which can also measure the temperature and pressure of the surrounding water, are a big step up from 416the bulky 417tags of yesteryear 418, which would provide a single acoustic frequency that allowed researchers to follow the fish if they were close enough. And they are improving rapidly. "People are talking about tags which sample blood from animals underwater," says Dr Semmens.
The same technology can be used for environmental monitoring as well as pure science. Dr Semmens has tagged several endangered Maugean skate in Tasmania's Macquarie harbor with somewhat larger sensors - they weigh 60 grams, instead of 10 - that measure heart rate and the dissolved oxygen content of the water. Parts of the harbor are becoming anoxic - deprived of oxygen - because of large-scale near-shore salmon farming. The data from the skate show how much of this 419is going on, and how much harm it is doing. That makes it easier to argue for changes that boost conservation efforts.
One of the biggest benefits of better measured seas is the possibility of getting to grips with dramatic weather events. The top 3 meters of the oceans hold more heat energy than the entire atmosphere. How much of that energy escapes into the air, and when and where it does so, drives the strength and frequency of storm systems. And there is ever more energy to do that driving. The average surface temperature of the seas 420has risen by about 0.9°C (1.6°F) in the past hundred years, according to America's National Oceanic and Atmospheric Administration. This means that, since the 1980s, 421about a billion times the heat energy of the atom bombs dropped on Hiroshima and Nagasaki has been added to the ocean - roughly an atomic explosion every few seconds.
Yet even as the amount of energy the oceans hold has risen, the details of its transfer to the atmosphere remain unknown for large swathes of the ocean. This is particularly important when it comes to understanding something like the South Asian monsoon. The rains are driven by the huge size of the Bay of Bengal and the amount of fresh water that pours into it from the Ganges and Brahmaputra river 422 423systems. Because this buoyant fresh water cannot easily mix with the denser salty water below it, the surface gets very warm indeed, driving prodigious amounts of evaporation. Better understanding these processes would improve monsoon forecasts - and could help predict cyclones, too.
That's why it's hotter under the water
To this end Amala Mahadevan of Woods Hole Oceanographic Institute (WHOI) in Massachusetts, 424has been working with the Indian weather agencies to install a string of sensors hanging down off a buoy in 425the northern end of the Bay of Bengal.
A large bank of similar buoys called the Pioneer Array has been showing oceanographers things they have not seen before in the two years it has been operating off the coast of New England. The array is part of the Ocean Observatories Initiative (OOI) funded by America's National Science Foundation. It is providing a three-dimensional picture of changes to the Gulf Stream, which 426 is pushing as much as 100km closer to the shore than it used to. "Fishermen are catching Gulf Stream fish 100km in from the continental shelf," says Glen Gawarkiewicz of WHOI. These data make local weather forecasting better.
Three other lines of buoys and floats have recently been installed across the Atlantic in order to understand the transfer of deep water from the North Atlantic southwards, a flow which is fundamental to the dynamics of all the world's oceans, and which may falter in a warmer climate.
Another part of the OOI is the Cabled Array off the coast of Oregon. Its sensors, which span one of the smallest of the world's tectonic plates 427, the Juan de Fuca plate, 428are connected by 900km of fibre-optic cable and 429powered by electricity cables that run out from the shore. The array is designed to gather data which will help understand the connections between the plate's volcanic activity and the biological and oceanographic processes above it.
A set of sensors off Japan takes 430a much more practical interest in plate tectonics. The Dense Oceanfloor Network System 431for Earthquakes and Tsunamis (DONET) consists of over 50 sea-floor observing stations, each housing pressure sensors which show whether the sea floor is rising or falling, as well as seismometers 432 which measure the direct movement caused by an earthquake. When the plates shift and the sea floor trembles 433, they can send signals racing back to shore at the speed of light in glass 434, beating the slower progress of the seismic waves through 435the Earth's crust, to 436give people a few valuable extra seconds of warning. Better measuring of climate can save lives over decades; prompt measurement of earthquakes can save them in an instant 437.
Better satellite connectivity, robot boats and torpedo drones are helping. 438
The first use the modern world made of the oceans' depth was to run telegraph cables across them. That opened up a new era of intercontinental communication 439and spurred a new scientific interest in the abyss 440 441. Both enterprises have prospered 442 443: single cables now carry as much as 160 terabits across the Atlantic every second; oceanographers have mapped and drilled into the ocean floor around the world 444. But they have not come together 445. It is now very easy to get vast amounts of data from one side of an ocean to another; but it is hard to get even modest amounts of data out from the ocean itself. A new infrastructure is needed to enable sensors at sea to transfer their data back to land 446.
Sebastien de Halleux of Saildrone, the firm whose drones keep an eye on Alaska's pollock, dreams of doing much more than that. Saildrone recently increased its build-rate from one a month to one a day; by 2021 Mr de Halleux wants to have a thousand of his little craft sailing the seas 447. A full Helen of Troy's-worth sounds extravagant 448. But it is important to put it into context 449. First, smartphone components 450make such boats cheap; Mr de Halleux thinks he can build the whole fleet for less than the cost of one research vessel (roughly $100m). Second, the ocean is very big. Divide its surface into 1,000 pieces and each one is still the size of Japan. That is quite a lot of ground for a single little boat to cover.
There is already one research network considerably larger than 451this. An international collaboration 452called Argo has a regularly replenished fleet of nearly 4534,000 untethered buoys 454which divide their time between the surface and the depths, drifting at the whim of 455 the currents 456. Over ten-day cycles they sink slowly down to about 2,000 meters and back up, measuring temperature and salinity as they go. Their data have revolutionized oceanographers' understanding of 457 their subject 458. But the network is still sparse 459- one float for every Honduras-sized patch of 460ocean.
Though restricted to the surface 461, Saildrone's craft are much more ambitious. They will not just monitor temperature; they will track fish 462and pick up pollutants 463, analyse carbon-dioxide and oxygen concentrations in the water, record the height of the waves and the speed of undersea currents 464, feel variations in the magnetic field 465 and more 466. There are already markets for some of these data: weather forecasters, fisheries managers, oil and gas companies. For others the scheme 467has a "Field of Dreams" approach: build the data set and they will come.
Saildrone has so far raised $29m for this work. Ion Yadigaroglu, managing partner of 468the Capricorn Group, one of the investors, compares the company to Planet, a satellite company in which Capricorn has also invested. Planet has used smartphone technology and Silicon Valley agility to 469produce a constellation of 470over 100 small satellites. They provide images of every spot on Earth every day, allowing all sorts of new insights and monitoring possibilities. "Planet is a scanning platform for the Earth," he says. "Saildrone wants to be a scanning platform for the oceans."
Planet, though, has been able to build a network of ground stations to get 471its daily terabits of data down from the satellites passing overhead 472and out to customers. For Saildrone, where the data start off on the surface 473, the equivalent 474would be to build its own satellite network. This it cannot afford to do, so, like Argo, it uses satellite services provided by others. And these are expensive.
Argo can afford such satellite services because its floats produce relatively little data - a quick spurt every ten days or so 475 476. Saildrone boats produce far more, and so currently have to throw almost all of it away. Mr de Halleux says the drones' filtering algorithms cut the data down by a factor of 477 60 before transmission 478 479. If the company knew exactly what data the market would put most value on that might be acceptable. But with data never routinely gathered before it does not know 480.
Systems are needed to get data out of the depths and up to the surface. Eamon Carrig, co-founder of Autonomous Marine Systems (AMS), based in Massachusetts, seeks to meet that need, providing "power, communications and bandwidth for other projects". His "datamarans", which also rely on wind for free propulsion 481using a solid "wing" sail, are smaller and cheaper than those 482built by Saildrone. They are designed to deploy sensors and buoys for third parties, such as Argo, and also to act as relays for 483 things which can communicate only through sound 484.
Jayson Semmens of the University of Tasmania, who tracks sharks with tiny sensors, says that what he would really like to do would be to "track animals that never break the surface, and find a way to exfiltrate data from 485them". Among other things, live data from underwater animals would allow conservation biologists to manage ecosystems directly, instead of making decisions based on historical averages 486. It might be possible to get such data swiftly 487from fish to shore using a local network of AMS drones equipped with 488acoustic modems as an intermediary 489 490.
Other schemes exist for allowing connectivity to pop up as 491and when needed and swim away when all is done. Jeff Smith of Riptide Autonomous Solutions, a drone company also based in Massachusetts, is working with POSYDON, a programme run by DARPA, to build a system of small torpedo drones which will swim out and create a temporary acoustic communications chain in any area of the ocean that needs it, bouncing information from drone to drone 492.
The more of such systems there are, the wider the range of research which will be possible - especially if standards now being developed allow all the different systems to talk to each other. New buoys could add to the data 493Argo provides in particular places of interest without the need for 494a research ship to schlep out 495and deliver them. New types of buoy could be added, too. Last year Paul Allen, a co-founder of Microsoft, announced that he would spend $4m on 33 new Argo floats which could go down far deeper than the current ones, profiling temperature, pressure and salinity to a depth of 6,000 meters 496.
What is most needed, though, is a new generation of satellite internet to get data from the surface to the shore. Happily this seems to be on the way 497. Various companies are racing to deliver high-bandwidth internet to the entire surface of the Earth using hundreds of small, cheap satellites in low orbits. SpaceX, Elon Musk's rocket business, launched its first prototypes on February 22nd. The main beneficiaries are likely to be 498 people in areas not served by current infrastructure. But to serve all those parts of the world, these services need to serve all the oceans, as well.
With satellite connectivity available at the surface, and acoustic systems deployed as and when needed below, there would be one more thing needed to complete the picture: a map of the ocean floor. Valuable in itself 500, it would also be a great help to underwater vessels trying to navigate or to prospect for minerals 501 502. Being able to compare what sonar shows below you with a map stored on board would make things a lot easier.
The best overall maps of the ocean floor to date 503have been made from space. Large underwater features like mountains and trenches exert a gravitational influence on 504 505the water above them 506, subtly changing the shape of the surface. Orbiting altimeters 507can measure those small excursions from mean sea level 508, and computers can use that data to infer what 509the sea-floor topography responsible for it looks like. This has produced maps with an average horizontal resolution of 510 5km - 511good for getting the gist of things 512, but little help to a drone trying to find its way.
Maps made with modern sonar systems towed behind research ships 513are better, but currently cover only 10% of the ocean floor at high resolution. Jyotika Virmani, an oceanographer working at XPRIZE, a non-profit outfit which 514 gives awards for 515technological progress 516, is trying to improve this. Nineteen teams from around the world have entered the competition she is running to map the sea floor without using any 517human-piloted craft at all 518 519. The first round of the competition asked the teams to map 100 square kilometers of seabed to a five-meter resolution in under 16 hours. Next year the second round will ask for the same resolution over 250 square kilometers in a day. Ms Virmani is hoping the whole seabed will be mapped to a resolution of 100 meters or better by 2030.
That will not be an end to the mysteries of the deep. But it will mark a new era in their exploration 520. With easier communications from any point of the surface, a clearer idea of what lies below each of those points, and ever better sensors populating the volume in between 521, the oceans will be much better known. This will not make them any less marvellous 522 523. But it should make it easier to preserve their marvels 524.
- slug[slog] it out ; (싸움·시합에서) 결판이 날 때까지 싸우다 [본문으로]
- coastal patrol boat ; (군사) 연안경비정 [본문으로]
- be alive with ; …으로 붐비다, 북적거리다; 활기차다 [본문으로]
- grunt ; 1. (돼지가) 꿀꿀거리다; (돼지처럼) 꿍꿍거리다. ;; 2. 투덜거리다, 중얼중얼 불평하다(grumble). [본문으로]
- whistle ; 3. 피리[휘파람] 같은 소리를 내다, 삑삑 울리다; 기적을 울리다. ;; 4. 윙윙[쉿쉿] 소리를 내다. [본문으로]
- grind one's teeth ; 이를 갈며 분해하다 ;; (분노·고통 따위로) 이를 갈다. [본문으로]
- log ; 2. (log・book) (특히 항해・운항・비행 등의) 일지[기록] [본문으로]
- beam ; 2. (무선·라디오) 〔신호 전파〕를 보내다, 송신하다; 〔프로그램〕을 방송하다[to, at]. [본문으로]
- chirrup ; 짹짹 ((새 우는 소리)); 쯧쯧 ((혀를 차는 소리)) [본문으로]
- depth ; 5. DEEPEST PART | [C] [주로 복수로] (무엇의) 가장 깊은[극단적인/심한] 부분 [본문으로]
- listen (out) for sth/sb ; (특정한 소리가 나는지) 잘 듣다[귀를 기울이다] ;; to listen carefully to see if you can hear somebody/something [본문으로]
- fathom ; 패덤(물의 깊이 측정 단위. 6피트 또는 1.8미터에 해당) [본문으로]
- sound wave ; [명사] 음파 [본문으로]
- bounce ; 1. MOVE OFF SURFACE | 튀다, (빛・소리가) 산란하다; 튀기다 [본문으로]
- hull ; [명사] (배의) 선체 [본문으로]
- interpretation ; (pl. interpretations [-z]) [U, C] 2. (정보 따위의) 해독, 판정; (특히 군사용 항공 사진의) 분석[판독]법. [본문으로]
- aquatic life ; [명사] (수문학) 수중 생물 [본문으로]
- rudimentary ; 1. 원리의, 기본의, 기초의; 초보[초등]의. ;; 동의어 ELEMENTARY ;; 2. 미발달의, 미완성의. ;; 3. (생물) 원기(原基)의, 발육 부전(不全)의; 흔적이 있는. [본문으로]
- solid ; 4. RELIABLE | (기반이) 탄탄한, 확실한, 믿을 수 있는 ;; 5. GOOD BUT NOT SPECIAL | 알찬; 믿음직한 [본문으로]
- phantom bottom ; [명사] (해양학) 심해 산란층(深海産卵層) [본문으로]
- floor ; 4. OF THE SEA/FORESTS | [C] [주로 단수로] (바다・숲 등의) 바닥 [본문으로]
- en masse ; [부사] (불어에서) (보통 많은 수가) 집단으로[일제히] ;; 한 묶음으로, 통틀어서 ;; ORIGIN French = in a mass ;; 미국식 [|ɑ~:] 영국식 [|ɒ~ |mӕs] [본문으로]
- deep scattering layer ; (해양) 심해 산란층(深海散亂層), 유형 해저(海底): 바닷속의 생물이 층상(層狀)으로 살고 있기 때문에 음향이 산란되는 층. [본문으로]
- be local to ; 흐름상 "멕시코에서 주로, 특징적으로 관찰되는 생물이나 특정 요소" 정도의 의미 [본문으로]
- present in ; ~에 있는 [본문으로]
- rise and fall ; 1. (배가) 파도에 오르내리다 ;; 2. (가슴이) 뛰다 ;; 3. (나라 등이) 융성 쇠퇴하다 [본문으로]
- unseen ; [형용사] 1. 아직 본 적이 없는, 처음 보는; 미지의, 알지 못하는. 2. 보이지 않는. 3. [英] (과제 따위가) 즉석의. [본문으로]
- spectacle ; 2. [C , U] (굉장한) 구경거리[행사] ;; 3. [C] 장관, (굉장히 인상적인) 광경 ;; 4. [sing.] (기이한・놀라운) 모습[상황] [본문으로]
- planetary ; 1. 행성(行星)의[같은] ;; 2. 천체의 영향을 받은 ;; 3. 지구의, 이 세상의; 세계적인 ;; 4. 유랑[표류]하는, 일정치 않은; [機]유성 기어식의; (전자가) 원자핵 주위를 도는 [본문으로]
- extent ; [sing., U] 1. (크기・중요성・심각성 등의) 정도[규모] ;; 2. (어떤 지역의) 크기[규모] [본문으로]
- mass ; 2. [C] [주로 단수로] ~ of sth (양이) 많은 ~ ;; 3. [sing.] ~ of sth (흔히 제멋대로 모여 있는 많은 사람・사물의) 무리 [본문으로]
- undiscovered ; 발견되지 않은, 찾아내지 못한 ; 미지의(unknown). [본문으로]
- inscrutable ; [형용사] (사람・표정이) 불가해한[헤아리기 어려운] ;; 참고 ; impenetrable, mysterious, enigmatic ;; 미국·영국 [ɪn|skru:təbl] [본문으로]
- subsurface ; 표면 아래의; 지표 밑의, 수면 밑의 [본문으로]
- inhospitable ; 1. 손님 대접이 나쁜, 무뚝뚝한, 불친절한, 반가워하지 않는(unwelcoming), (지방·장소 따위) 살기 힘든, 황량한, 적막한(exposed, bleak, uninviting). ;; 미국식 [|ɪnhɑ:|spɪtəbl] 영국식 [|ɪnhɒ|spɪtəbl] [본문으로]
- corrode ; 1. 〔금속 등〕을 부식(腐蝕)[침식]하다(away) ;; 미국식 [kə|roʊd] 영국식 [kə|rəʊd] [본문으로]
- mechanism ; 1. (기계 내에서 과업을 수행하는 부분인) 기계 장치[기구] ;; 2. (목적을 달성하기 위한) 방법, 메커니즘 ;; 3. (생물체 내에서 특정한 기능을 수행하는) 구조[기제] [본문으로]
- radio wave ; (통신) 전파, 전자파 [본문으로]
- rule out ; [동사] 제외시키다, 배제하다; 불가능하게 하다. ;; 동의어 ; exclude, eliminate. [본문으로]
- breathable ; 호흡할 수 있는[하기에 알맞은], 신선한; (옷감 따위가) 통기성(通氣性)이 있는. [본문으로]
- curtail ; 1. (짧게) 줄이다(cut short, shorten) ; (강연·휴일·작업 등을) 단축하다, (말 등을) 생략하다(abbreviate) ;; 2. (비용 등을) 삭감하다, 절약하다(cut down, diminish, reduce) ; (권리 따위를) 줄이다, 빼앗다(deprive). [본문으로]
- brutal ; 2. 인정사정없는, 잔인할 정도의 [본문으로]
- landmark ; 1. (항행의 길잡이가 되는 육지의) 안표(眼標), 육표(陸標). ;; 2. (토지의) 경계 표지. ;; 3. 획기적인 사건[발견, 변화]; 역사적 건물[장소], 유적, 명소. [본문으로]
- get round[around] sth ; (문제를 성공적으로) 해결[처리]하다 [본문으로]
- by-blow ; 간접적인 타격(indirect blow); 우연한 재난; 남의 일로 해를 입음. ;; 서자, 사생아 [본문으로]
- deepwater ; [형용사] 깊은 물의, 심해의(deep-sea); 원양의 [본문으로]
- plankton ; [U] [집합적; 종종 복수취급] (생물) 부유 생물, 플랑크톤. ;; 미국∙영국 [|plӕŋktən] [본문으로]
- work out ; 1. ~을 계산[산출]하다 ;; 2. ~을 해결하다[(답을) 알아내다] ;; 3. ~을 계획해[생각해] 내다 [본문으로]
- sonar ; [U] 소나, 수중 음파 탐지기 ;; 참고 radar [본문으로]
- stand for ; 1. (진행형으로는 쓰이지 않음) (약어나 상징물이) ~을 나타내다[의미하다] [본문으로]
- spot ; (-tt-) 1. [진행형으로는 쓰이지 않음] 발견하다, 찾다, 알아채다(특히 갑자기 또는 쉽지 않은 상황에서 그렇게 함을 나타냄) [본문으로]
- thus ; 《문어》 1. 이와 같이, 이렇게, 이런 식으로, 지금 말한 것처럼. ;; 2. 그래서, 그러므로, 따라서. ;; 3. [형용사·부사를 수식하여] 이만큼, 이 정도. ;; 4. 예를 들면. [본문으로]
- military ; [형용사] 1. 군의, 군사의, 군용의; (해군에 대하여) 육군의. ;; [명사] (pl. -tar·ies)[집합적] 1. [the ~; 보통 복수 취급] 군대; 군, 군부 2. [the ~; 복수 취급] 군인; ((특히)) 육군 장교 [본문으로]
- sensing ; [명사] (전산학) 감지(感知) ;; 탐사 [본문으로]
- sensorium ; 1. (해부·심리) 감각 중추; 감각[지각] 기관. ;; 2. 감각기. ;; 3. (일반적으로) 두뇌, 마음. ;; 4. (정신의학) 의식, 지각. [본문으로]
- commerce ; [U] 1. 상업, 통상, 교역(交易) (cf. INDUSTRY, TRADE) ;; 미국식 [|kɑ:mɜ:rs] 영국식 [|kɒmɜ:s] [본문으로]
- sea floor ; [명사] (지질학) 해저(海底) [본문으로]
- undertake ; (under・took / -'tUk / under・taken / -'teIkən /), (격식) 1. [타동사][VN] (책임을 맡아서) 착수하다[하다] [본문으로]
- a chain of mountain ; 산맥 [본문으로]
- snake ; [자,타동사][+ adv. / prep.] (뱀처럼) 꿈틀꿈틀 움직이다[구불구불 가다] [본문으로]
- seam ; 1-a. 솔기, 꿰맨 줄 ;; 1-b. 솔기의 바늘땀[실땀] [본문으로]
- continental drift ; [U] (지리) 대륙 이동(설) ;; 참고 ; plate tectonics [본문으로]
- explanatory ; [형용사] (주로 명사 앞에 씀) 이유를 밝히는; 설명하기 위한 ;; 참고 ; self-explanatory [본문으로]
- plate tectonics ; (pl.) [단수취급] (지질) 플레이트 텍토닉스, 판(板)구조론(지구의 표층부를 이루고 있는 암판들의 이동에 의해 지각 변동이 일어난다고 하는 학설). [본문으로]
- industrial ; 2. 산업[공업]이 발달한, 산업[공업]화한. [본문으로]
- offshore ; [형용사] 4. 앞바다의 해저(海底)에 있는[에서 채취되는]. [본문으로]
- benefit ; 2. [자동사][V] ~ (from/by sth) (~에서) 득을 보다 [본문으로]
- contents ; [명사] 내용물 [본문으로]
- matter ; [자동사][진행형으로는 쓰이지 않음] ~ (to sb) 중요하다; 문제되다 [본문으로]
- in the past decade ; 지난 10년간 [본문으로]
- remote ; (remot·er; -est) 1. <거리가> 먼, 멀리 떨어진 ((from)) ;; 동의어 ; distant [본문으로]
- electronic components ; 전자 부품 [본문으로]
- kickstart ; [vn] 1. (오토바이의 시동 장치를 발로 밟아) 시동을 걸다 ;; 2. 촉진시키다, 부양하다 [본문으로]
- robotics ; [명사] 로봇 공학 [본문으로]
- put (out) to sea ; 출항[출범]하다 [본문으로]
- transformative ; 변화시키는, 변화시키는 힘이 있는 [본문으로]
- bring about ; 야기하다, 초래하다; 항해 <배의> 방향을 돌리다 ;; to make something happen [본문으로]
- transformation ; 1. [C , U] ~ (from sth) (to/into sth) (완전한) 변화[탈바꿈], 변신 [본문으로]
- for most of history ; 역사에 걸쳐 [본문으로]
- hunter-gatherer ; (인류) 수렵·채집[채집·수렵]인[생활자]. [본문으로]
- overfish ; [타동사] …의 물고기를 남획하다. ;; [자동사] (일정 해역에서) 물고기를 남획하다. [본문으로]
- decry ; 타동사(-cried) 1. 비난하다, 헐뜯다 (cry down, disparage, censure). ;; 2. (경제) <통화 등의> 가치를 떨어뜨리다 [본문으로]
- undo ; (un・does / Vn'dVz / un・did / Vn'dId / un・done / Vn'dVn /), [vn] 1. (잠기거나 묶인 것을) 풀다[열다/끄르다] ;; 2. 무효로 만들다, 원상태로 돌리다 ;; 3. [주로 수동태로] (격식) 실패하게 만들다, 망치다 [본문으로]
- hunting ground ; 1. (특정한 관심을 가진 사람이 원하는 것을 쉽게 찾을 수 있는) 사냥터 ;; 2. (동물) 사냥터 [본문으로]
- realm ; [명사] (활동・관심・지식 등의) 영역[범위] [본문으로]
- productive ; 1. (상품・작물을 특히 대량으로) 생산[산출]하는 ;; 2. 결실 있는, 생산적인 ;; 참고 counterproductive ;; 3. ~ of sth (격식) ~을 야기하는[불러일으키는] [본문으로]
- sustainable ; 1. (환경 파괴 없이) 지속 가능한 ;; 2. 오랫동안 지속[유지] 가능한 [본문으로]
- reduction ; 1. [C , U] ~ (in sth) 축소, 삭감, 감소 ;; 2. [C] 할인, 인하 ;; 3. [C] (사진・그림・지도 등의) 축소판[축도] [본문으로]
- until recently[lately] ; 이즈음까지, 최근까지 [본문으로]
- tow ; [타동사][VN] (자동차・보트를) 끌다[견인하다/예인하다] [본문으로]
- move around ; to keep moving from one place to another [본문으로]
- flow ; 1. (물・공기의) 흐름, 해류, 기류 [본문으로]
- acoustically ; [부사] 청각적으로, 음향학상. [본문으로]
- mother ship ; (주로 英) 모함(母艦) (잠수 모함·수뢰 모함·항공 모함 따위). [본문으로]
- vastly ; [부사] 대단히, 엄청나게 [본문으로]
- fishery management ; 어업 경영 , 어업 관리 ;; 수산경영학 [본문으로]
- weather prediction ; [명사] (기상학) 기상 예측(氣象豫測) ;; 일기 예보. [본문으로]
- venture-capital ; [명사] (상업) 벤처 자금(벤처 기업에 투자되는 자금) ;; 참고 ; working capital [본문으로]
- envision ; 1. (특히 앞으로 바라는 일을) 마음속에 그리다[상상하다] ;; 2. (특히 美) ;; 동의어 envisage [본문으로]
- herd ; 3. [a ~] 대량, 다량, 다수 ((of)) [본문으로]
- wind turbine ; [명사] 풍력 발전용 터빈 [본문으로]
- autonomously ; [부사] 자체적으로; 독자적으로. [본문으로]
- graze ; 5. [자동사][V] ~ (on sth) (비격식) (음식을 하루에 여러 번, 특히 다른 일을 하면서) 조금씩 자주 먹다 [본문으로]
- inaccessible ; 가까이하기 어려운, 얻기 힘든; 접근하기 어려운, 도달하기 힘든 [본문으로]
- seabed ; 해저(海底)(=seafloor) [본문으로]
- reality ; 2. [U, C] (종종 -ties) 사실, 현실, 실제. ;; 3. [C] 실체, 실존물, 실현된 것. [본문으로]
- farming ; 1. 농장 경영, 농경, 농업(agriculture). ;; 2. 사양(飼養) ; 양식 ; 탁아(託兒). ;; 3. (조세 따위의) 징수청부. [본문으로]
- open ocean ; 탁 트인 바다, 대양 [본문으로]
- befit ; [타동사][VN] (-tt-) [3인칭에 대해서 분사형으로만 쓰임] (격식) 걸맞다 [본문으로]
- implication ; 2. [U] 연루, 연좌, 말려들기[in]; (보통 implications) 밀접한 관계; 영향, (예상된) 결과[for]. [본문으로]
- surveillance ; [U] (용의자·죄수의) 감시, 파수 보기; 감독, 지휘(supervision). [본문으로]
- dent ; 2. (자신감・명성 등을) 훼손하다 [본문으로]
- for a shift ; 임시 변통으로, 미봉책으로 [본문으로]
- plant ; 2. SEEDS/PLANTS | ~ sth (with sth) (어떤 지역을 식물・나무 등으로) 덮다[가꾸다] [본문으로]
- herd ; 1. [자,타동사][+ adv. / prep.] (특정 방향으로) 이동하다[하게 하다] ;; 2. [타동사][VN] (짐승을) 몰다 ;; [자동사] (소·양 따위의 떼를) 모으다; (소·양 따위를) 지키다(tend) ;; [타동사] …을 모으다. [본문으로]
- means ; (pl. means), (참고: end n. , fair adj. , way n.) 1. [C] ~ (of doing sth/of sth) 수단, 방법, 방도 [본문으로]
- settlement ; 5. [C] 정착지 ;; 6. [U] 정착 (과정) [본문으로]
- peril ; (격식 또는 문예체) 1. [U] (심각한) 위험 ;; 2. [C] [주로 복수로] ~ (of sth) 위험성, 유해함 [본문으로]
- show restraint in ; ...에 대해서 자제하다, 삼가다 [본문으로]
- lessen ; 1. …을 작게[적게] 하다, 감소시키다, 완화시키다. [본문으로]
- shed ; [흔히 합성어에서], (참고: cowshed , potting shed , woodshed) 1. (…을) 보관하는 곳, (작은) 헛간 ;; 2. (英) (산업 현장의 큰) 작업장[창고] ;; [본문으로]
- outskirt ; 1. (종종 pl.) (마을·도시 따위의) 변두리, 교외, 시외. ;; 2. (보통 pl.) (성격·자질·상태 따위의) 한계, 한도 (border, fringes). [본문으로]
- cuboid ; (기하) 직육면체, 직평행육면체 [본문으로]
- rubberize ; [타동사] <천에> 고무를 입히다, 고무로 처리하다 [본문으로]
- [/footnote][footnote](pl. threads[-z]) 1. [U]실, 섬유; [C](한 가닥의) 실; 바느질 실, 꼰 실. ;; 2. (실처럼) 가는 것, 실 모양의 것; (빛·금속·유리 따위의) 줄, 가느다란 선; (기체·액체의) 가느다란 줄기; (광석의) 세맥(細脈). [본문으로]
- pressure-resistant ; 내압식[성]의 [본문으로]
- innards ; [pl.], (비격식) 1. 내장(특히 위) ;; 2. (기계의) 내부 [본문으로]
- lower ; 1. 낮추다, 내리다(opp. heighten); <보트 등을> 내리다(opp. raise) [본문으로]
- pioneering ; [주로 명사 앞에 씀] 개척[선구]적인, 선도적인, 최초의 [본문으로]
- move across ; to move from one side of something to the other [본문으로]
- suck up ; 빨아올리다 ;; 참고 ; suck up (to sb) ;; (비격식, 못마땅함) (~에게) 알랑거리다 [본문으로]
- en route ; ~ (from…) (to…) | (英) ~ (for…) (英 불어에서) (어디로 가는) 도중에 [본문으로]
- tract ; 2. (넓은) 지역[지대] [본문으로]
- fracture zone ; [명사] (해양학) 파쇄역(破碎域), 단열대, 파쇄대 [본문으로]
- stress ; 3. [UC/] [물리] 압력, 중압; [기계] 응력(應力) ;; 4-a. [[U]] 압박, 강제, 강압 [본문으로]
- crust ; 3. (일반적으로) 딱딱한 표면[외피(外皮)]; 〈지질〉 지각; (동물의) 갑각(甲殼). [본문으로]
- scatter ; 1. [타동사][VN] ~ sth (on/over/around sth) | ~ sth (with sth) (흩)뿌리다 ;; 2. (사람・동물이[을] 사방으로) 황급히 흩어지다[흩어지게 만들다] [본문으로]
- fist-sized ; 주먹만한 크기의 [본문으로]
- nodule ; 2. (지질) (광물 따위의) 작은 덩어리, 유괴(瘤塊). [본문으로]
- of의 연속 사용 확인 [본문으로]
- agglomeration ; [C , U] (격식) 집합체, 복합체 ;; [U]덩어리로 하기[되기], 집적, 응집(작용); [C]덩어리 [본문으로]
- basin ; 5. 분지; (하천의) 유역 ;; 6. [지질] 퇴적 분지; [해부] 골반 [본문으로]
- regulate ; 1. 규제하다, 단속하다, 통제하다 ;; 2. <수량·정도·기계를> 조절[조정]하다, 정리하다 ;; 3. 규칙적이 되게 하다, 질서 정연하게 하다 [본문으로]
- grant ; 1. [흔히 수동태로] ~ sth (to sb/sth) | ~ (sb) sth (특히 공식적・법적으로) 승인[허락]하다 [본문으로]
- concession ; 3. [美] 토지[매장] 사용권; (석유·광물) 채굴권; 구내 매점. ;; 4. [C] (특히 정부나 고용주가 집단・단체 등에 부여하는) 권리[혜택] ;; 5. [C] 영업권; (가끔 더 큰 건물이나 상점 내부의) 영업장소 [본문으로]
- ore ; [UC/] 광석; [시어] 금속, ((특히)) 금, 귀금속 ;; 미국∙영국 [ɔ:(r)] [본문으로]
- terrestrial deposit ; [명사] (지질학) 육성 퇴적물 [본문으로]
- put together ; 합하다 [본문으로]
- a transition to ; …로의 변천. [본문으로]
- clean energy ; 클린 에너지 ((태양열이나 전기처럼 대기를 오염시키지 않는 에너지)) [본문으로]
- speed up ; 속도를 더 내다[높이다] ;; 동의어 ; speed something up [본문으로]
- be set in ; ~에서 설정되다, 정해지다 [본문으로]
- potential market ; (경제학) 잠재시장 [본문으로]
- dredging ; [명사] (광산공학) 준설(작업) ; 준설한 토사. [본문으로]
- seek sth/sb out ; (특히 많은 노력을 기울여) ~을 찾아내다 ;; to search hard for and find a specific person or thing [본문으로]
- wind farm ; [명사] 풍력 발전 지역 [본문으로]
- state-run ; [형용사] 국영의 [본문으로]
- race ; 2. COMPETITION | [sing.] ~ (for sth/to do sth) (특히 정권을 잡거나 무엇을 처음 성취하기 위한) 경쟁 ;; 참고 ; rat race [본문으로]
- at the (very) moment ; 바로 지금(=now) ;; (《현재형으로》) 지금[마침], 바로 지금; 《과거형으로》 (마침) 그때 [본문으로]
- set the pace ; 1. 첨단[선두]을 달리다 ;; 2. 경주에서 선두를 달리다 [본문으로]
- exploit ; [주로 복수로] 위업, 공적 [본문으로]
- bearing ; 4. [C] (전문 용어) (기계의) 베어링 ;; 참고 ; ball bearing ;; 5-a. (기계) (건조물의) 지지 부분; 지주(支柱) ;; 5-b. (기계) 상부 구조를 떠받치는 것[지지하는 구조] ;; 6. (기계) [종종 pl.] 축받이, 베어링 [본문으로]
- rate ; [진행형으로는 쓰이지 않음] 1. ~ sb/sth (as) sth | ~ as sth (특정한 수준으로) 평가하다[여기다]; 평가되다[여겨지다] ;; 3. [주로 수동태로] 등급[순위]을 매기다 [본문으로]
- atmosphere of pressure ; (단위)기압 [본문으로]
- tread ; 4. (차륜·타이어 따위가 지면이나 레일에) 닿는 면; (레일의) 접촉면. [본문으로]
- sink into ; …으로 가라앉다[가라앉히다]. [본문으로]
- ooze ; 1. [U] (호수・강바닥의) 부드러운 진흙, 개흙 ;; 미국∙영국 [u:z] [본문으로]
- dredge ; 1. ~ (sth) (for sth) (강・운하 바닥 등을) 준설하다[훑다] ;; 2. ~ sth (up) (from sth) (강바닥 등에서) 건져 올리다 [본문으로]
- abyssal ; [형용사] (전문 용어) 심해의(특히 3000~6000미터 깊이의 해저) ;; 미국∙영국 [ə|bɪsl] [본문으로]
- prospect ; [타동사] 조사하다, 답사하다; 시굴하다 ((for)) [본문으로]
- caterpillar track ; [명사] 무한궤도식 바퀴 ; 탱크나 포크래인 등의 롤러 형식의 바퀴 ;; A continuous track in the form of a steel or rubber belt fitted instead of wheels to crawlers, bulldozers, tanks and similar off-road vehicles ;; [본문으로]
- reliable ; [ADJ] People or things that are reliable can be trusted to work well or to behave in the way that you want them to. [본문으로]
- Archimedes'[Archimedean] screw ; [명사] (기계) 아르키메데스의 나선 양수기, 나사 펌프. [본문으로]
- expertise ; [U] ~ (in sth/in doing sth) 전문 지식[기술] [본문으로]
- recover ; 4. STH LOST/STOLEN | [타동사][VN] ~ sth (from sb/sth) (분실물・도난물 등을) 되찾다[찾아내다] [본문으로]
- hype ; [타동사][VN] ~ sth (up) (비격식 못마땅함) (대대적으로 과장된) 광고[선전]를 하다 [본문으로]
- speculation ; 1. [U , C] ~ (that…) | ~ (about/over sth) 추측, (어림)짐작 ;; 2. [U , C] ~ (in sth) 투기 [본문으로]
- develop ; [자동사] 1. 발달하다; 발전하다; 전개되다, 발육하다 ((from, into)) ;; 2. <사실 등이> 밝혀지다; <숨었던 것이> 밖으로 나타나다; 우연히 (…이) 알려지다; [사진] <사진의 상(像)이> 나타나다, 현상되다; (유리한 위치에) 말을 움직이다; [생물] 발생하다, 진화하다 ((from)) [본문으로]
- capacity ; 2. ABILITY | [C , U] [주로 단수로] ~ (for sth/for doing sth) | ~ (to do sth) (…을 이해하거나 할 수 있는) 능력 [본문으로]
- the law of the sea ; 해양법 [본문으로]
- ratify ; 1. …을 인가[승인]하다; 〔조약 따위〕를 비준하다, 재가하다. ;; 2. 〔대리인의 행위〕를 승인하다, 추인하다. ;; 동의어 ; APPROVE [본문으로]
- at last ; (많은 지체·노력 등이 있은 후에) 마침내[드디어] ;; 참고 ; lastly [본문으로]
- full-blown ; [명사 앞에만 씀] …의 모든 특성을 갖춘, 완전히 발달한[진행된] ;; 1. (꽃이) 만발한; 완전히 성숙한. ;; 2. 모든 특성[조건]을 갖춘, 완전한, 본격적인. ;; 3. (병이) 악화된, 상당히 진행된. ;; 4. (돛이) 바람을 잔뜩 받은. [본문으로]
- prototype ; 2. 모범, 모델, 본보기가 되는 사람[것]. [본문으로]
- combine harvester ; 종자작물, 주로 곡물을 수확하는 차량. 작물을 베고 타작하고 겨를 분리한다. ;; Vehicle that harvests seed crops, usually grain; it cuts, threshes and separates the seeds from the chaff. [본문으로]
- umbilical ; 〈로켓〉 (우주선 따위의 전력·연료·산소 따위의) 공급선(線); (우주 유영(遊泳)에서) 생명줄; 〈공학〉 필수 접속선[관] ;; 탯줄, 구명삭(umbilical cord); 묶는 것, 연결물 ;; 미국식 [ʌmbílikəl] 영국식 [ʌmbíli-,ʌ̀mbilái-] [본문으로]
- commercial production ; (농업) 상업적생산(商業的生産) ;; 판매용 생산 [본문으로]
- slurry ; [U] 슬러리(동물 배설물에 점토, 분탄, 시멘트 따위를 섞은 걸쭉한 물질) ;; ((pl. -ries)) 슬러리, 현탁액(懸濁液) ((시멘트·점토·석회 등과 물의 혼합물)) [본문으로]
- for the time being ; 당분간, 당장(當場)에. [본문으로]
- environmentally ; [부사] 환경 보호적으로; 《문장수식》 환경 보호의 입장에서 보면. [본문으로]
- plume ; (참고: nom de plume) 1. (연기・수증기 등이 피어오르는) 기둥 [본문으로]
- silt ; [U] 유사, 토사, 세사(물에 쓸려 와서 강어귀・항구에 쌓이는 가는 모래・진흙 등) ;; [U] 침니(沈泥), 실트(모래보다 잘고 진흙보다 거친 침적토(沈積土)). [본문으로]
- swamp ; [vn], [흔히 수동태로] 1. ~ sb/sth (with sth) (처리가 힘들 정도의 일 등이) 쇄도하다[넘쳐 나다] ;; 2. (큰 파도 등이) 뒤덮다[집어삼키다] [본문으로]
- diversity of life ; 생명체의 다양성 [본문으로]
- mining field ; 채광장, 채굴장, 광산지역 [본문으로]
- ring ; (ringed , ringed), [vn] 1. SURROUND | [흔히 수동태로] ~ sb/sth (with sth) …을 둘러[에워]싸다 [본문으로]
- steer ; 1. (어떤 방향으로) 향하다, 나아가다 ((for, to)); 키를 잡다, 조종하다 [본문으로]
- autonomously ; [부사] 자체적으로; 독자적으로. [본문으로]
- end up in ; 결국 …로 끝나다. [본문으로]
- sight ; 3. HOW FAR YOU CAN SEE | [U] 눈(으로 볼 수 있는 범위), 시야, 시계 [본문으로]
- commission ; [타동사] 1. 위임하다, …에게 권한을 주다(authorize); …에게 위임장을 주다; <장교로> 임관하다(appoint); <일 등을> 의뢰하다, 주문하다 ;; 1. <기계가> 작동하다 [본문으로]
- bed ; 2. OF RIVER/LAKE/SEA | [C] (강・바다 등의) 바닥 [본문으로]
- be rich[abundant] in ; ~가 풍부하다 [본문으로]
- iron sand ; 사철(砂鐵) [본문으로]
- challenge ; 3. (굉장히 큰 노력이 드는) 문제, 과제(task) [본문으로]
- precaution ; [UC/] [종종 pl.] 조심, 경계; [C] 예방 조치, 사전 대책 [본문으로]
- work out ; 2. ~을 해결하다[(답을) 알아내다] [본문으로]
- clear away ; 청소하다; ~을 치우다 ;; 동의어 ; clear something away [본문으로]
- footprint ; 1. 발자국, 족적(足跡). ;; 2. (검증용으로 채취하는) 발 모양, 족문(足紋); 《구어》 (차도에 난) 타이어 자국. [본문으로]
- wrought ; [타동사][VN] [과거형으로만 쓰임] (격식 또는 문예체) (특히 변화를) 초래하다[일으키다] ;; HELP ; wrought는 work의 과거형을 나타내는 고어이다. ;; 참고 ; wreak [본문으로]
- doubly ; 부사[형용사 앞에 쓰여] 1. (평상시의) 두 배로 ;; 2. 두 가지로; 두 가지 이유로 [본문으로]
- plough (주로 英) (美 plow) ; 쟁기로 갈다[일구다] ;; 동의어 ; plow [본문으로]
- furrow ; 1. 밭고랑 ((둑과 둑 사이의)), 도랑, 이랑의 홈 ;; 2. 길쭉한 홈 ((도랑과 같은)); 항적(航跡); 바퀴 자국(cut); [문어] (얼굴의) 깊은 주름살 ;; 3. 경지(耕地), 밭 [본문으로]
- triple ; 3배가 되다; 3배로 만들다 [본문으로]
- St Peter's Basilica ; [명사] (지명) 산피에트로대성당 [본문으로]
- polyhedral ; [형용사] (수학) 다면체의 ;; polyhedric [본문으로]
- in diameter ; 직경이 얼마인. [본문으로]
- Ferris wheel ; 페리스 대회전(大回轉)식 관람차(cf. CAROUSEL, ROLLER COASTER) ;; (유원지의) 대회전 관람차. [본문으로]
- tip ; (-pp-), (참고: hat n.) 1. LEAN/POUR/PUSH AT AN ANGLE | 기울어지다, 젖혀지다; 기울이다, 젖히다 [본문으로]
- flying saucer ; [명사] 비행접시 ;; 참고 ; UFO [본문으로]
- yet to come ; 아직 오지 않았다, 더 남아있다 ;; 문장에서 도치하여 사용한 것을 확인 [본문으로]
- occupant ; 1. 점유자, 현거주자; (지위 등의) 보유자 ;; 2. (법) 점거자, 선점자 ;; 3. (가옥·토지 등의) 임차인, 소작인(tenant) [본문으로]
- open ocean ; an area of ocean that is far from land ;; 참고 ; open sea ; the main body of a sea or ocean, especially the part that is outside territorial waters and not enclosed, or partially enclosed, by land. ;; The open ocean is also called the pelagic zone of the ocean [본문으로]
- echo sounder ; [명사] 음향 측심기(반향을 통해 해저의 깊이를 측정하거나 해저의 물체를 찾는 장치) [본문으로]
- high-definition ; [형용사] (명사 앞에만 씀) (전문 용어) 고화질[고선명도]의 [본문으로]
- dangle ; [타동사] …을 흔들리게 하다, 매달다; 《비유적》 〔유혹 따위〕를 어른거리게 하다[in front of, before]. [본문으로]
- movable ; 1. 움직일 수 있는, 가동(可動)의; 이동하는 ;; 2. (법) 동산의(personal)(opp. real) ;; 3. <축제일 등이> 해마다 날짜가 바뀌는 [본문으로]
- central role ; 중심적 역할 [본문으로]
- provision ; (참고: provide) 1. [U , C] [주로 단수로] 공급, 제공 [본문으로]
- past ; [전치사] 3. (특정한 정도・단계를) 지나서[넘어서서] [본문으로]
- sustainable ; 1. (환경 파괴 없이) 지속 가능한 ;; 2. 오랫동안 지속[유지] 가능한 [본문으로]
- automate ; [타동사][VN] [주로 수동태로] (일을) 자동화하다 [본문으로]
- key problems ; 핵심 문제, 주요 문제 [본문으로]
- near-shore ; [형용사] 연안의, 해변의, 연안 지대의. [본문으로]
- pollute ; [타동사][VN] ~ sth (by/with sth) 오염시키다 [본문으로]
- excrement ; [U] (격식) 대변, 배설물 ;; [U] [문어] 배설물; [종종 pl.] 대변 ;; feces, dung [본문으로]
- foul up ; (비격식) 일을 엉망으로 만들다[망치다] ;; 참고 foul-up [본문으로]
- fjord (또한 fiord) ; [명사] (특히 노르웨이의) 피오르드 ;; 해안선 안쪽으로 들어온 깊은 빙하 계곡에 바닷물이 채워져 형성된 계곡. ;; Deep glacial valleys filled with seawater and cutting into the shoreline. ;; 미국식 [|fjɔ:rd] 영국식 [|fjɔ:d] [본문으로]
- still water ; (흐름이) 잔잔한 물 [본문으로]
- breeding ground ; (동물의) 사육장, 사육소, 번식지; [비유] (사상·상황 등을 육성하는) 적합한 장소[환경], 온상 [본문으로]
- sea live ; (해양과학) 바다물이 ;; 물이과(Caligidae)에 속하며 copepoda의 일종으로 어류 등에 기생하는 종 전체를 말함. [본문으로]
- oxygenate ; [타동사][VN] (전문 용어) 산소를 공급하다 ;; [화학] 산소로 처리하다, 산소와 화합시키다; …에 산소를 주입[첨가]시키다 ;; 미국식 [|ɑ:ksɪdƷəneɪt] 영국식 [|ɒksɪdƷəneɪt] [본문으로]
- sweep (sth) away ; 완전히 없애다, 일소하다 [본문으로]
- feed ; [명사] 2. FOR ANIMALS/PLANTS | [U , C] (동식물의) 먹이[영양분 공급원] [본문으로]
- the water's surface ; 수면 [본문으로]
- varying ; [형용사] (연속적으로) 바뀌는, 변화하는; 가지각색의 [본문으로]
- triple ; 3배가 되다; 3배로 만들다 ;; 미국·영국 [|trɪpl] [본문으로]
- quintuple ; [자, 타동사] 다섯 배가 되다[되게 하다] ;; 미국∙영국 [|kwɪntjʊpl ; kwɪn|tju:pl ; 美 또한 kwɪn|tu:pl] [본문으로]
- scaling up ; [명사적 활용] 규모 확장 [본문으로]
- high[rapid, speedy]-growth ; 고도 성장 [본문으로]
- optimize (英 또한 -ise) ; [타동사][VN] …을 최대한 좋게[적합하게] 만들다[활용하다] ;; [자, 타동사] 낙관하다(opp. pessimize). [본문으로]
- feeding ; [U] 1. 음식 섭취, 급식; 사육 ;; 2. [기계] 급송; 급수; 급전 [본문으로]
- operator ; 1. (기계·장치 등의) 조작자, 기사(技士), 기수(技手). [본문으로]
- structure ; 3. 체계(system) [본문으로]
- optimum ; 최적의; (어떤 조건하에서) 최선[최고]의(optimal) [본문으로]
- expansion ; 1. [U] 확장; [비유] 발전(development) ((of)); 확대(enlargement); [상업] 거래의 확장; [미] 영토 확장 [본문으로]
- second-strike capability ; (군사) 제2격 능력 ;; The ability to survive a first strike with sufficient resources to deliver an effective counterblow (generally associated with nuclear weapons). [본문으로]
- solid fuel ; (로켓의) 고체연료(solid propellant); (석유·가스에 대하여) 석탄 따위의 고형(固形)연료 [본문으로]
- from out (of) ; …에서, …에게서 ((out of의 강조형)) [본문으로]
- from beneath ; 밑에서(부터) [본문으로]
- begin a phase ; …의 단계에 들어가다 [본문으로]
- arsenal ; 1. (집합적) 무기 ;; 2. 무기 공장, 무기고 [본문으로]
- retaliatory ; [형용사] 보복적인, 앙갚음의, 복수심이 강한 ;; 미국식 [ritǽliətɔ́:ri] [본문으로]
- mutually assured destruction ; (군사) 상호확증파괴 ▶핵 공격시 적의 핵 미사일도 착전 격멸하는 핵 보복전략 [본문으로]
- thereby ; [부사] (격식) 그렇게 함으로써, 그것 때문에 ;; 1. 그것에 의하여, 그것 때문에(by that, by that means). ;; 2. 거기에 관하여(connected with that). ;; 3. (고어·방언) 그 근처[부근]에(thereabouts). [본문으로]
- deter ; (-rr-) ~ sb (from sth/from doing sth) 단념시키다, 그만두게 하다 ;; 참고 ; deterrent [본문으로]
- menace ; [타동사][VN] (격식) 위협하다, 으르다, 협박하다 ;; 동의어 ; threaten [본문으로]
- at large ; 1. (명사 뒤에 쓰여) 전체적인; 대체적인 ;; 2. 위험한 사람·동물이 잡히지 않은[활개 치고 다니는] ;; 1.as a whole, in general ;; 2.free; not captured [본문으로]
- surface ship ; A military (naval) vessel designed for operation on the marine surface, as distinguished from a submarine or other types of vessels. [본문으로]
- arm ; 6. OF ORGANIZATION | [주로 단수로] ~ (of sth) (조직의) 부문 ;; 4. (조직·기구 등의) 부문, 지부; [군사] (육군의) 전투 부대, 전투 부문 [본문으로]
- up until now ; 여태까지, 지금까지(=So far) [본문으로]
- fairly ; 2. 꽤, 어지간히, 상당히(tolerably); 그저 그렇게(moderately) ;; 3. [구어] 아주, 완전히(completely); 정말로(actually), 사실상 ;; 4. 멋들어지게(handsomely), 적절히(properly), 적당하게, 정당하게, 합법적으로 [본문으로]
- unafraid ; [명사 앞에는 안 씀] ~ (of sth) | ~ (to do sth) (격식) 두려워[불안해]하지 않는 [본문으로]
- sonobuoy ; [명사] 자동 전파 발신 부표(浮標) ((수중의 소리를 탐지하여 무선 신호를 보내주는 부표)) ;; 미국식 [sɑ́noubù:i] 영국식 [sɔ́noubɔ́i] [본문으로]
- spot ; (-tt-) 1. [진행형으로는 쓰이지 않음] 발견하다, 찾다, 알아채다(특히 갑자기 또는 쉽지 않은 상황에서 그렇게 함을 나타냄) [본문으로]
- aeroplane (英) ; [명사] (美 air・plane , plane 英, 美) 비행기, 항공기 ;; 미국식 [|erəpleɪn] 영국식 [|eərəpleɪn] [본문으로]
- wait around[about] ; (특별히 하는 일 없이) 그냥 기다리다 [본문으로]
- on board ; [명사] (조선공학) 선상에(船上~) ;; 승선[승차/탑승]한 [본문으로]
- envision ; 1. (특히 앞으로 바라는 일을) 마음속에 그리다[상상하다] ;; 2. (특히 美) ;; 동의어 ; envisage [본문으로]
- loiter ; (loiters[-z]) 1. (어떤 장소에서) 어슬렁거리다, 어정거리다, 어정버정 걷다[가다](about, along). ;; 2. 하는 일 없이 시간을 보내다, (일에) 늑장부리다. [본문으로]
- move around ; to keep moving from one place to another [본문으로]
- omnipresent ; (격식) 편재하는, 어디에나 있는 (ubiquitous). ;; 미국식 [|ɑ:mnɪ|preznt] 영국식 [|ɒmnɪ|preznt] ;; [본문으로]
- ocean basin ; [명사] (지리학) 대양 분지 ;; [地] 해분(海盆) [본문으로]
- head (sth) up ; (부서 등을) 이끌다[책임지다] ;; to be in charge of something such as a department, a company, an organization, etc. [본문으로]
- deep sound channel ; 심해음파통로(深海音波通路) [본문으로]
- to some[a certain] extent ; 얼마간, 어느 정도까지, 다소 [본문으로]
- salinity ; [U] 염분, 염분 함유도, 염도 [본문으로]
- bend ; [자동사] 1. 구부러지다, 휘다 ((to)) ;; 3. 방향이 바뀌다, (…쪽으로) 향하다 ((to)) [본문으로]
- refraction ; [U] 1. (물리) (빛·소리 따위의) 굴절 (작용). ;; 2. (광학) (눈의) 굴절력. ;; 3. (천문) 대기차(大氣差). ;; 4. [비유적] 비뚤어짐, 왜곡. ;; [형용사] refraction·al [본문으로]
- propagate ; [자동사] 2. 보급되다; <전자파·압축파 등이> 전파되다 [본문으로]
- wavelength ; (물리) 파장; 주파수; 《구어》 사고 방식. (또는 wáve lèngth) [본문으로]
- optical fiber[fibre] ; [명사] 광섬유 [본문으로]
- zoologist ; [명사] 동물학자 [본문으로]
- oceanwide ; 전 바다의 , 전해양 [본문으로]
- fix ; [명사] 3. (선박·비행기 등의) 위치(position); 위치의 결정 [본문으로]
- retransmit ; [타동사] 고쳐 송신하다, 재송신하다 [본문으로]
- acoustic ; 청관(聽官)[각]의, 소리를 듣기 위한(auditory) ; 청감의, 청력상의 ; 음향상의. [본문으로]
- Optimum Frequency ; (전기공학) 최적 주파수(最適周波數) [본문으로]
- propagation ; 4. (소리·열 따위의) 전파(傳播), 전달. [본문으로]
- model ; 3. CREATE COPY | [타동사][VN] 모형[견본]을 만들다 ;; 4. (모형·설계도에 따라) 만들다, 고안하다(make, plan) ; 설계하다(plan out, design) ; 조직하다(organize). [본문으로]
- variable ; 1. 변동이 심한; 가변적인 ;; 참고 ; invariable ;; 2. 변화를 줄[변경할] 수 있는 [본문으로]
- condition ; 4. CIRCUMSTANCES | [pl.] conditions (생활・작업 등의) 환경[상황] ;; 7. NECESSARY SITUATION | [C] (전제) 조건 [본문으로]
- decipher ; [타동사][VN] 판독[해독]하다 ;; 참고 ; indecipherable ;; <암호·수수께끼를> 풀다, 해독[번역]하다(decode); <고문서 등을> 판독하다(opp. cipher); <상황을> 확실하게 하다 [본문으로]
- tricky ; (trick・ier , tricki・est) 1. (하기・다루기) 힘든[까다로운], 곤란한 ;; 2. (사람이) 영리하지만 사기꾼 같은 데가 있는, 교묘한 [본문으로]
- air-independent propulsion ; (군사) 공기불요 추진(空氣不要推進) [본문으로]
- extended ; [형용사] (명사 앞에만 씀) (보통 때나 예상보다) 길어진[늘어난] [본문으로]
- pivot ; [자동사] 1. (…을 축으로 하여) 선회하다 ((on, upon)) ;; 2. (…으로) 결정되다 ((on, upon)) ;; 1. 추축을 중심으로 돌다 ; 경첩식으로 회전하다(hinge). ;; 2. …에 따라 결정되다, …에 달려있다(turn) (upon). [본문으로]
- cavity ; (pl. -rise) 1. 움푹 파진 곳(hole), 요부(凹部), 구덩이(hollow). ;; 2. (해부) (신체의) 공동(空洞), 강(腔). [본문으로]
- propulsion ;[U] (전문 용어) 추진, 추진력 ;; 참고 ; propel ;; 1. 전진, (배 등의) 추진(propelling). ;; 2. 추진력(propulsive force). [본문으로]
- a case in point ; (논의 중인 문제·상황 등에) 딱 들어맞는 사례 ;; 유례; 좋은 예; 자기가 화제로 삼고 있는 일의 예 [본문으로]
- boast ; 자랑하다, 자랑하며 말하다 ((of, about, that …)) [본문으로]
- nuclear-posture review ; 핵 태세 보고서 ;; The Nuclear Posture Review (NPR) is a process “to determine what the role of nuclear weapons in U.S. security strategy should be.” [본문으로]
- intercontinental ; 1. 대륙 간의, 대륙을 잇는. ;; 2. 대륙 간을 비행[운항]하는, 대륙에서 대륙으로 넘어가는. [본문으로]
- torpedo ; (pl. ~es) 1. 수뢰, 어뢰, 부설 기뢰 ;; 2. 지뢰(mine) [본문으로]
- great deal ; (idiomatic) A large number or amount. [본문으로]
- warhead ; [명사] (미사일의) 탄두 [본문으로]
- disturbing ; 불안하게 하는; 불온한, 교란시키는; 방해가 되는 ((to)) [본문으로]
- the balance of advantage ; 승산 [본문으로]
- choke point ; 우회하기 어려운 길[지점], 관문, 애로. (또는 chókepóint) ;; (교통·항해의) 험한 곳, 요충 [본문으로]
- an array of ; ~의 행렬, ~의 배열, 다수의~ [본문으로]
- hydrophone ; [명사] (잠수함 따위의 위치를 탐지하는) 수중 청음기(聽音器); 수관 검루기(水管檢漏器); [의학] 통수식(通水式) 청진기 [본문으로]
- trail ; 4. [타동사][VN] (자취를 따라) 뒤쫓다, 추적하다 [본문으로]
- in this[that] regard ; (앞에서 방금 언급한) 이것[이 점]/그것[그 점]과 관련하여 [본문으로]
- shift ; [자동사] 1. 이동하다, 옮기다, 위치를 변경하다, 바꾸다[to]. [본문으로]
- crackle ; [자, 타동사] 우지직우지직[딱딱] 소리 내다[나게 하다]; 금이 가다[가게 하다] [본문으로]
- groan ; 1. ~ (at/with sth) (고통・짜증으로) 신음[끙 하는] 소리를 내다; (기뻐서) 낮게 탄성을 지르다 ;; 2. [자동사][V] 신음 소리 같은 소리를 내다 [본문으로]
- mask ; [타동사][VN] (감정・냄새・사실 등을) 가리다[감추다] [본문으로]
- subtle ; (sub・tler , sub・tlest), (more subtle도 흔히 쓰인다.) 1. (지각할 수 없을 정도로) 미묘한; 포착하기 어려운; 불가사의한; 이해하기 어려운; 미세한 [본문으로]
- year-round ; 1년 내내의, 연중 계속되는 ;; 연중무휴의. [본문으로]
- deposit ; [타동사] 1. 놓다(lay down, place) ; 내리다. [본문으로]
- beneath ; 1. 밑에, 낮게, 아래쪽에(below, at a lower level) ; 똑바로 밑에 (underneath) ; 땅밑에. [본문으로]
- tag ; (-gg-) 1. [타동사][VN] 꼬리표를 붙이다 ;; 참고 ; electronic tagging [본문으로]
- get from ; …에게서 얻다. [본문으로]
- ride ; 3. IN VEHICLE | (승용차 등을 타고 가는) 길[여정] [본문으로]
- networked ; [형용사] 네트워크화한, 네트워크 방송의 [본문으로]
- breakthrough ; 1. (군사) 돌파 (작전) ;; 2. (과학 등의) 큰 발전, 약진, (귀중한) 새 발견 ((in)) ;; 3. (난관의) 돌파(구), 타개(책), (난문제의) 해명 [본문으로]
- erode ; 2. (서서히) 약화시키다[무너뜨리다]; 약화되다[무너지다] [본문으로]
- norm ; 1. (종종 the norm) 표준, 기준; (종종 norms) 규범, 모범. [본문으로]
- nuclear deterrence ; 핵 억지력 [본문으로]
- underestimate ; (참고: underrate) 1. (비용・규모 등을) 너무 적게 잡다[추산하다] ;; 2. [타동사][VN] (사람을) 과소평가하다 [본문으로]
- ice shelf ; (전문 용어) (육지에 연결된) 바다를 덮은 빙상 ;; 빙붕(氷棚)(ice sheet의 끝이 바다로 밀려 나온 부분). [본문으로]
- widen ; [자동사] 넓어지다, 넓게 되다. [본문으로]
- a quarter of ; ~의 4분의 1 [본문으로]
- weigh ; 1. 무게[체중]가 …이다 [본문으로]
- the Southern Ocean ; [명사] (해양과학) 남빙양 (南氷洋) [본문으로]
- detach ; 1. ~ (sth) (from sth) (더 큰 것에서) 떼다[분리하다]; 분리되다 ;; 참고 ; attach ;; 2. [타동사][VN] ~ yourself (from sb/sth) (격식) (~에서) 몸을 떼어내다[떠나다] [본문으로]
- sea level ; (측정) 해면(海面), 평균 해면(만조와 간조의 중간 해면으로 산의 해발의 높이를 재는 기준) (=mean sea level). [본문으로]
- buttress ; [타동사][VN] (격식) 지지하다, 힘을 실어 주다 ;; 부벽으로 버티다; 지지하다, 보강하다 ((up)) [본문으로]
- break up ; 1. 부서지다 [본문으로]
- on shore ; 육지에(opp. on the water, on board) [본문으로]
- sea level rise ; 해수면 상승 [본문으로]
- dynamics ; pl. 1. [단수 취급] [물리] 역학; 동역학; 역학 관계 ;; 2. 원동력; 힘, 활력, 에너지, 박력; 정신 역학 [본문으로]
- calving ; 1. (해양학) 분리 빙하(分離氷河) [본문으로]
- obscure ; 1. 잘 알려져 있지 않은, 무명의 ;; 2. 이해하기 힘든, 모호한 [본문으로]
- be due to ; ~할 예정이다 [본문으로]
- subglacial ; 빙하 밑(바닥)의 ; 빙하 밑(바닥)에 있었던. [본문으로]
- glaciologist ; [명사] 빙하학자, 빙하 연구가. [본문으로]
- set to ; (구식, 비격식) (열심히·결연한 태도로) 시작[착수]하다 ;; to begin working [본문으로]
- cruise ; 1. <지역을> 순항하다; <비행기를> 순항 속도로 날게 하다, <차를> 경제 속도로 몰다 [본문으로]
- saloon ; 1. (sa|loon car , 美 sedan) (또한 英 모두 사용 ) 세단형 승용차(문이 네 개이고 뒤에 트렁크가 있는 보통의 승용차) [본문으로]
- knot ; 6. SPEED OF BOAT/PLANE | 노트(선박・항공기의 속도를 재는 단위; 1 시간에 1 해리 나아가는 속도) [본문으로]
- vary ; (vary・ing , var・ied , var・ied), (참고: varied) 1. [자동사][V] ~ (in sth) (한 무리의 비슷한 것들이) (크기・모양 등에서) 서로[각기] 다르다 ;; 2. [자동사][V] ~ (with sth) | ~ (from sth to sth) | ~ (between A and B) (상황에 따라) 달라지다[다르다] [본문으로]
- upwards ; (up・ward 특히 美) 1. 위쪽으로 ;; 동의어 ; UPWARD [본문으로]
- roughness ; [U]거칢; 울퉁불퉁함; 사나운 날씨; 난폭, 조잡; 무례, 교양없음; 귀에 거슬림, 부조화; 떫은 맛; 신맛; 거칠게 만듦 [본문으로]
- fisheries manager ; [명사] (수산학) 어업 관리인(漁業管理人) [본문으로]
- changing ; [형용사] 변화하는 [본문으로]
- stock ; 2. SUPPLY | [C , U] ~ (of sth) 비축물, 저장품 ;; 6. FARM ANIMALS | [U] 가축, (농장) 동물 ;; 참고 ; livestock [본문으로]
- Alameda ; [명사] 알라미다(California 주(州) 서부 San Francisco 만에 면한 항구 도시; 해군의 대항공 기지가 있음) [본문으로]
- [/footnote][footnote][명사] 샌프란시스코만(灣): 미국 California 주 서부에 있는 만; Golden Gate 해협에 의해 태평양과 연결; 길이 80km, 너비 5-20km. [본문으로]
- quarterly ; 년 4회 간행물, 계간지. [본문으로]
- ply ; (plies , ply・ing , plied , plied) 1. (문예체) (배・버스 등이) (정기적으로) 다니다[왕복하다] ;; 2. [타동사][VN] (격식) (도구를 능숙하게) 다루다 ;; 미국∙영국 [plaɪ] [본문으로]
- sail ; 1. [C , U] 돛 [본문으로]
- trim ; 3-b. [항해] <바람을 잘 받도록 돛·돛가름대를> 조정하다, 조절하다; <연료·뱃짐을> 화물창에 싣다 [본문으로]
- at all times ; 항상[언제나] [본문으로]
- on-board computer ; An on-board computer is a small computer that is installed inside the cab of a vessel. When connecting the device to other peripherals like scanners, printers, temperature or safety sensors, or to a digital tachograph, it provides data that significantly increase the productivity and cost efficiency of a logistics company. The on-board computer display allows drivers to exchange data with the back office in real time [본문으로]
- -equipped ; [형용사] ~장비를 갖춘 [본문으로]
- autopilot ; [명사] (항공기・배의) 자동 조종 장치 ;; automatic pilot [본문으로]
- top sth up ; 1. (이미 액체가 어느 정도 들어 있는 용기를) 가득 채우다 ;; 2. ~을 보충하다[~의 양을 늘리다] [본문으로]
- base ; [타동사] 3. (…에) …의 기지[본거지]를 두다 ((in, at)) [본문으로]
- for up to a year ; (최대) 1년 까지 [본문으로]
- maintenance ; [U] 1. ~ (of sth) (건물・기계 등을 정기적으로 점검・보수하는) 유지 [본문으로]
- echo sounder ; [명사] 음향 측심기(반향을 통해 해저의 깊이를 측정하거나 해저의 물체를 찾는 장치) [본문으로]
- subsidiary ; (pl. -ies) 자(子)회사 [본문으로]
- reflect ; 3. [타동사][VN] (사물의 속성・사람의 태도・감정을) 나타내다[반영하다] [본문으로]
- in one's own way ; 자기 나름대로 [본문으로]
- swim bladder ; (물고기의) 부레(bladder) [본문으로]
- resonate ; 2. ~ (with sth) (어떤 장소에[가]) (소리가) 울려 퍼지다; 공명이 잘 되다 ;; 3. ~ (with sb/sth) (…을) 상기시키다[떠올리게 하다]; (…의) 공명을 받다[반향을 불러일으키다] [본문으로]
- emit ; [타동사][VN] (-tt-) (격식) (빛・열・가스・소리 등을) 내다[내뿜다] [본문으로]
- frequency ; 3. [C , U] (전문 용어) (소리・전자파 등의) 진동수[주파수/빈도] [본문으로]
- supplement ; [타동사][VN] ~ sth (with sth) 보충[추가]하다 [본문으로]
- chief operating officer ; [명사] (기업의) 업무 집행 담당 최고 책임자(보통 회장 밑의 사장으로 일상 업무를 총괄; COO). [본문으로]
- count ; 1. TOTAL | [주로 단수로] (총계를 알기 위한) 셈, 계산; 총수, 총계 ;; 참고 ; headcount [본문으로]
- disturbance ; (pl. -anc·es[-iz]) [U, C] 1. 어지럽히기, 소란 (떨기); 훼방, 방해; 〈법률〉(권리) 침해, (치안) 방해; [C]어지럽히는 것, 방해물. ;; 2. 어지럽힌 상태; 마음의 동요, 당황, 불안, 근심. ;; 동의어 ; AGITATION [본문으로]
- in time ; 이윽고 ;; 1.not late ;; 2.after quite a long time; eventually [본문으로]
- go beyond ; ~을 초과하다 ;; ~을 넘어서다 [본문으로]
- sustainably ; [부사] 지속[유지] 가능하게; 환경 파괴 없이 지속될 수 있게. [본문으로]
- in perpetuity ; 영구히, 영원히 [본문으로]
- marine biologist ; 해양 생물학자 [본문으로]
- fearsome ; [형용사] (격식) 1. (특히 외모 따위) 무서워 할 만한, 무서운, 무시무시한(terrible, grisly). ;; 2. 두려워하는, 벌벌 떠는(timorous, timid). [본문으로]
- metabolism ; [[U]] (생물) (물질)대사 (작용), 신진대사(cf. CATABOLISM, ANABOLISM) [본문으로]
- accelerometer ; [명사] (물리) 가속도계 ;; 미국식 [ək|selə|rɑ:mɪtə(r)] 영국식 [ək|selə|rɒmɪtə(r)] [본문으로]
- fin ; 1. (물고기의) 지느러미 ;; 2. <차량・비행기・기계류에서 모양과 기능이 지느러미 같은 것> [본문으로]
- clamp ; 1. (보통 나사를 이용한) 죔쇠[죄는 기구] [본문으로]
- expand ; 2. 확장되다, 발전하다(be extended, develop)(into). [본문으로]
- breach ; [자동사] (고래가) 물 위로 뛰어오르다. [본문으로]
- retrieve ; 1. 되찾다, 회수하다(get again) [본문으로]
- dissolve ; 1. [자동사][V] ~ (in sth) (고체가) 녹다, 용해되다 ;; 4. 사라지다, 흩어지다 [본문으로]
- be armed with ; …을 갖추고[준비하고] 있다; …으로 무장하고 있다 [본문으로]
- gain an understanding of ~ ; ~을 이해하다 [본문으로]
- food chain ; 먹이 사슬 ; 보통 the food chain ;; 살아 있는 유기체 간의 포식과 의존 관계의 질서. [본문으로]
- basic to ; …에 있어서 기초적인. [본문으로]
- terrestrial ecosystem ; [명사] (식물학) 육지 생태계(陸地生態系) [본문으로]
- comparatively ; 1. 비교적(으로); 비교해 보면 ;; 2. 상당히, 꽤 [본문으로]
- at heart ; 흐름상 "실제로는, 근본적으로는" 정도의 의미 [본문으로]
- no more than ; 단지 …에 지나지 않다, …일 뿐(only) [본문으로]
- step up ; [명사적] 흐름상 "발전" 정도의 의미 ;; 점진적 증가[증대] (increase, rise) [본문으로]
- bulky ; (bulk·i·er; -i·est) 1. (무게에 비해) 부피가 큰; 거대한, (너무 커서) 다루기 힘든 [본문으로]
- yesteryear ; [U] (구식 또는 문예체) 지난날, 왕년 ;; [명사-부사] [시어] 작년(에); 지난해(에)(last year); 근년(에); 지난 세월(에), 왕년(에) [본문으로]
- data 를 복수로 받는 것을 확인 [본문으로]
- surface temperature ; 1. (기상학) 지상 기온 ;; 2. (천문학) 표면온도 [본문으로]
- National Oceanic and Atmospheric Administration ; (원자력용어) 국립해양대기국(國立海洋大氣局)[미국(美國)] [본문으로]
- Ganges ; [명사] [the ~] 갠지스 강 ((벵골 만으로 흐르는 인도의 큰 강)) [본문으로]
- Brahmaputra ; [명사] [the ~] 브라마푸트라 강 ((Tibet 남서부에서 인도 북동부로 흐르는 강)) [본문으로]
- oceanographic ; 해양학의. (또는 oceanographical) -i·cal·ly 부사 [본문으로]
- weather agency ; 기상청 [본문으로]
- Gulf Stream ; [the ~] 멕시코 만류(멕시코 만에서 북류해서 북극양으로 들어가는 난류; 유럽 서부는 이 때문에 겨울철에 따뜻함) ;; (멕시코만에서 미국 연안을 북상한 후 동북으로 나아가 영국제도 방면에 이르는 난류). [본문으로]
- tectonic plates ; (지질) 지질구조판 [본문으로]
- the JUan de Fuca plate ; (지질학) 후안데푸카 판 ;; The Juan de Fuca Plate is a tectonic plate generated from the Juan de Fuca Ridge and is subducting under the northerly portion of the western side of the North American Plate at the Cascadia subduction zone. It is named after the explorer of the same name. One of the smallest of Earth's tectonic plates, the Juan de Fuca Plate is a remnant part of the once-vast Farallon Plate, which is now largely subducted underneath the North American Plate. [본문으로]
- fibre-optic cable ; 광학 섬유 전선 [본문으로]
- a set of things 를 단수 취급하는 것을 확인 [본문으로]
- plate tectonics ; [명사] (지리) 판구조론 [본문으로]
- seismometer ; [명사] 지진계 ;; 미국식 [saizmɑ́mətər,sais-] 영국식 [saizmɔ́-] [본문으로]
- tremble ; 1-c. <지면·건물 등이> 흔들리다, 진동하다, 파르르 떨다 [본문으로]
- race ; 3. MOVE FAST | [자,타동사][+ adv. / prep.] 쏜살같이[급히] 가다[가게 하다] [본문으로]
- seismic wave ; (자연지리학) 지진파(地震波) [본문으로]
- earth's crust ; [명사] (지질학) 지각(地穀) [본문으로]
- in an instant ; 곧, 당장, 즉시 [본문으로]
- torpedo ; (pl. -does) 1. 수뢰(水雷), 어뢰 ; 공뢰(空雷)(공중에서 투하하는 어뢰형 폭탄). ;; 미국식 [tɔ:r|pi:doʊ] 영국식 [tɔ:|pi:dəʊ] [본문으로]
- intercontinental ; [주로 명사 앞에 씀] 대륙간의 [본문으로]
- spur ; (-rr-), [vn] 1. ~ sb/sth (on) (to sth/to do sth) 원동력[자극제]이 되다, 자극하다 [본문으로]
- abyss ; 1. [U, C] 심연, 심해; 거대한 (암흑의) 공간; 《비유적》 구렁텅이. ;; 2. [U] (the abyss) 나락(奈落)의 밑바닥, 지옥(hell). [본문으로]
- enterprise ; 1. [C] 기업, 회사 ;; 2. [C] (특히 모험성) 대규모 사업 ;; 3. [U] (민간) 산업 참고 free enterprise, private enterprise ;; 4. [U] (호감) 진취성, 기획력 [본문으로]
- prosper ; [자동사][V] 번영[번창/번성]하다 [본문으로]
- ocean floor ; (지질학) 대양저 ;; Part of the Earth's surface beneath the seas and the oceans; its topography is highly variable. [본문으로]
- come together ; (하나로) 합치다 [본문으로]
- transfer ; 1. 옮기다, 움직이다, 나르다, 건네다(shift, convey, move, hand over). [본문으로]
- craft ; 4. [C] (pl. craft) 보트, 배 [본문으로]
- extravagant ; 1. 낭비하는, 사치스러운 ;; 2. 기발한, 엄청난(excessive); <요구·대가 등이> 터무니없는, 지나친(exorbitant) ;; ORIGIN ;; Latin 「헤매어 나오다」, 「도를 지나치다」의 뜻에서 [본문으로]
- put sth into context ; ~을 고려하다 [본문으로]
- component ; [명사] (구성) 요소, 부품 [본문으로]
- considerably ; [부사] (격식) 많이, 상당히 [본문으로]
- international collaboration ; 국제 협동, 국제교류협력, 국제공동연구 [본문으로]
- replenish ; [타동사][VN] ~ sth (with sth) (격식) (원래처럼) 다시 채우다, 보충하다 [본문으로]
- untether ; [타동사] <동물의> 맨 밧줄[사슬]을 풀다, …을 놓아주다 ;; 미국·영국 [ʌ̀ntéðər] [본문으로]
- drift ; 1. MOVE SLOWLY | [자동사][V + adv. / prep.] (물・공기에) 떠가다, 표류[부유]하다 [본문으로]
- whim ; 1. [C, U] 문득 마음에 떠오른 생각[착상]; 변덕, 일시적 기분, 종잡을 수 없는 생각[for]. [본문으로]
- revolutionize ; [타동사][VN] 대변혁[혁신]을 일으키다 [본문으로]
- oceanographer ; [명사] 해양학자 ;; 미국식 [òuʃənɑ́ɡrəfər] 영국식 [-nɔ́-] [본문으로]
- sparse ; 3. 부족한, 빈약한 [본문으로]
- -sized ; [형용사] [보통 복합어를 이루어] 크기가 …한 [본문으로]
- be restricted to ; ~로 제한되다, 한정되다 [본문으로]
- track ; 2. FOLLOW | (특히 특수 전자 장비를 이용하여) 추적하다 [본문으로]
- pollutant ; (격식) 오염 물질, 오염원 ;; 미국∙영국 [pə|lu:tənt] [본문으로]
- undersea ; [형용사] (명사 앞에만 씀) 바다 속의, 해저의 ;; 미국식 [|ʌndərsi:] 영국식 [|ʌndəsi:] [본문으로]
- variation ; 1. [C , U] ~ (in/of sth) (특히 양・정도의) 변화[차이] [본문으로]
- magnetic field ; [명사] 자기장 [본문으로]
- scheme ; [~ (for doing sth) | ~ (to do sth)] 1. (英) (운영) 계획, 제도 ;; 참고 ; colour scheme, pension scheme [본문으로]
- managing partner ; (합명 회사의) 업무 집행 사원. ;; 참고 ; silent partner [본문으로]
- agility ; [U] 민첩; 명민함 ;; 미국식 [ədʒíləti] [본문으로]
- a constellation of ; 3. (유사한 것의) 집합체. ;; 4. [비유적] 기라성 같은 모임[무리], 화려하게 차려입은 신사 숙녀의 모임(galaxy). [본문으로]
- ground station ; (항공·우주) (우주선 따위를 추적하는) 지상국(局)(earth station). [본문으로]
- overhead ; [부사] 머리 위에[로], 하늘 높이 [본문으로]
- start off ; 1. 움직이기 시작하다 ;; 2. (어떤 일이[을]) 시작되다[시작하다] ;; 3. (…하는 것으로) 시작하다[처음에는 …이다] [본문으로]
- equivalent ; 1. (…와) 같은 것, 동등물, 같은 가치의 것; 동의어; (…의) 상당물, 대응물[to, in, of]. [본문으로]
- spurt ; 1. 뿜어나옴, 분출; (감정 따위의) 폭발.;; 2. (최후의) 역주(力走), 힘차게 헤엄치기, (단시간의 전력) 분투, 스퍼트. ;; 3. (가격의) 급등 기간; (장사 따위의) 급성장. ;; 4. 짧은 시간, 한순간. (또는 spirt) [본문으로]
- or so ; (수량을 나타내는 말 뒤에 쓰여) …가량[정도/쯤] [본문으로]
- cut sth down ; (무엇의 크기·양·수를) 줄이다 동의어 cut down (on something) [본문으로]
- by a factor of ; (증감 규모가) …(배(倍)) 만큼 [본문으로]
- transmission ; (격식) 1. [U] 전염, 전파, 전달 ;; 2. [U] 전송, 송신 [본문으로]
- routinely ; [부사] 판에 박힌 듯, 관례대로 ;; 일상적으로 [본문으로]
- propulsion ; [U] (전문 용어) 추진, 추진력 ;; 참고 ; propel [본문으로]
- wing sail ; A variable-camber aerodynamic structure that may be fitted to a marine vessel in place of conventional sails. [본문으로]
- act as ; …으로서의 역할을 하다[맡다]. ;; ...의 소임을 다하다. ;; to perform a particular role or function [본문으로]
- relay ; 4. [電]계전기(繼電器); [軍]체전(遞傳), 체송(遞送); [통신]중계 [본문으로]
- exfiltrate ; (미·군대속어) 적진에서 탈출하다[시키다] ;; 미국∙영국 [eksfíltreit,éksfìltreit] [본문으로]
- historical averages ; 과거의 평균 [본문으로]
- swiftly ; [부사] 신속히, 빨리, 즉시, 즉석에서 [본문으로]
- be equipped with ; ~을 장착하고 있다 [본문으로]
- acoustic modem ; (컴퓨터/통신) 음향 모뎀 [본문으로]
- intermediary ; 1. 매개자[물], 중개자(go-between) ; 중재인(mediator). ;; 2. 매개, 수단(medium). ;; 3. 중간의 단계, 중간체[물](intermediary stage or form). [본문으로]
- connectivity ; [U] (전문 용어) 연결(성) ;; (컴퓨터) 접속 가능성 ((다른 기종과의 접속 용이성)) ;; 접속성; 〈컴퓨터〉 상호 통신 능력, 접속 가능성. [본문으로]
- bounce ; 8. 〔신호 따위〕를 통신위성으로 중계하다(off). [본문으로]
- add to ; ~을 늘리다[증가시키다] ;; …에 더하다[보태다]. [본문으로]
- the need for ; ~대한 욕구, 요구도, 필요(성) [본문으로]
- schlep (또한 schlepp) ;; (-pp-), (비격식 특히 美) 1. [자동사][V + adv. / prep.] (느릿느릿・힘들게・마지못해) 가다 ;; 2. [타동사][VN] (무거운 것을) 나르다[끌다] [본문으로]
- profile ; 1. …의 윤곽을 그리다, 측면[단면]도를 그리다; …의 인물 소개를 쓰다; …의 분석표를 정리하다[싣다]. [본문으로]
- be (well) on the/your way to/towards something ;; be about to achieve something in the near future (usually something good) [본문으로]
- beneficiary ; 1. 이익[은혜]을 받는 사람. ;; 2. (법률) (신탁) 수익자, (유산 등의) 수취인, (연금 등의) 수령인. [본문으로]
- bottom line ; [명사] the bottom line 핵심, 요점 ;; 2. [구어] 최종 결과, 결론; 요점, 핵심, 중요한 것; 전환점. [본문으로]
- in itself ; 그것 자체가[본질적으로] [본문으로]
- prospect for ; …을 시굴하다, 발굴하다 [본문으로]
- mineral ; 1. 광물(cf. ANIMAL, PLANT); 광석(ore); [화학] 무기물 ;; 2. [[UC/]] (영양소로서의) 광물질, 미네랄 [본문으로]
- to date ; 지금까지 [본문으로]
- trench ; 2. 호(ditch), 해자(垓字), (깊은) 도랑; 협곡(canyon). ;; 3. (해양) 해구(海溝); 협곡. [본문으로]
- gravitational ; (물리) 중력의, 인력의; 중력 작용의. [본문으로]
- exert ; 1. (권력・영향력을) 가하다[행사하다] [본문으로]
- altimeter ; [명사] (특히 항공기 등의) 고도계 ;; 미국식 [ӕl|tɪmətər] 영국식 [|ӕltɪmi:tə(r)] [본문으로]
- mean sea level ; 평균 해면 ((해발 기준)) [본문으로]
- infer ; (-rr-) 1. ~ sth (from sth) 추론하다 ;; 2. (비표준) (간접적으로) 뜻하다, 암시하다 [본문으로]
- topography ; [U] (전문 용어) 지형; 지형학 ;; 미국식 [tə|pɑ:grəfi] 영국식 [tə|pɒgrəfi] [본문으로]
- horizontal resolution ; [명사] (전자공학) 수평 해상도 ;; 영상의 수평 방향의 해상도, 즉 수평 방향 영상의 변화를 감지하거나 나타낼 수 있는 능력의 정도. 텔레비전 영상 신호의 경우에는 하나의 주사선에 존재하는 픽셀의 개수에 의해서 결정된다. [본문으로]
- gist ; [sing.] 보통 the gist ~ (of sth) (말・글・대화의) 요지[골자] [본문으로]
- tow ; 1. <차·배 등을> (밧줄[사슬]로) 잡아당기다(pull, draw) ((with)) ;; 2. 끌다, 끌어당기다; 안[밖]으로 끌다 ((in; out)) [본문으로]
- non-profit ; [형용사] 조직이 비영리적인 [본문으로]
- outfit ; 2. [C+sing./pl. v.] (비격식) (함께 작업하는) 팀[그룹/집단 등] [본문으로]
- technological progress ; (경제) 기술진보(技術進步) [본문으로]
- map ; ((~ped; ~·ping)) …의 지도[천체도]를 만들다; (지도 작성을 위해) 측량하다 [본문으로]
- pilot ; [타동사] 1-b. <비행기·우주선 등을> 조종하다 ;; 2-a. <배 등을> 안내[조종]하여 가다 [본문으로]
- craft ; 4. [C] (pl. craft) 보트, 배 ;; 5. [C] (pl. craft) 항공기(aircraft); 우주선(spacecraft) [본문으로]
- mark a new era in ; …에 새 시대의 한 획을 긋다 [본문으로]
- populate ; [vn] 1. [흔히 수동태로] (어떤 지역의 주민으로) 살다, 거주하다 ;; 2. (어떤 지역으로 사람・동물들을[이]) 이주시키다[하다] [본문으로]
- any less ; (《의문문·부정문에서》) 그만큼 적게 [본문으로]
- marvellous (英) (美 mar・vel・ous) ; [형용사] 기막히게 좋은, 경탄할 만한 [본문으로]
- marvel ; 1. 경이(로운 사람・것) ;; 2. [pl.] marvels 경이로운 결과[업적] [본문으로]